ABR prediction using supervised learning algorithms

Hiba Yousef, J. L. Feuvre, Alexandre Storelli
{"title":"ABR prediction using supervised learning algorithms","authors":"Hiba Yousef, J. L. Feuvre, Alexandre Storelli","doi":"10.1109/MMSP48831.2020.9287123","DOIUrl":null,"url":null,"abstract":"With the massive increase of video traffic over the internet, HTTP adaptive streaming has now become the main technique for infotainment content delivery. In this context, many bandwidth adaptation algorithms have emerged, each aiming to improve the user QoE using different session information e.g. TCP throughput, buffer occupancy, download time... Notwithstanding the difference in their implementation, they mostly use the same inputs to adapt to the varying conditions of the media session. In this paper, we show that it is possible to predict the bitrate decision of any ABR algorithm, thanks to machine learning techniques, and supervised classification in particular. This approach has the benefit of being generic, hence it does not require any knowledge about the player ABR algorithm itself, but assumes that whatever the logic behind, it will use a common set of input features. Then, using machine learning feature selection, it is possible to predict the relevant features and then train the model over real observation. We test our approach using simulations on well-known ABR algorithms, then we verify the results on commercial closed-source players, using different VoD and Live realistic data sets. The results show that both Random Forest and Gradient Boosting achieve a very high prediction accuracy among other ML-classifier.","PeriodicalId":188283,"journal":{"name":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP48831.2020.9287123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

With the massive increase of video traffic over the internet, HTTP adaptive streaming has now become the main technique for infotainment content delivery. In this context, many bandwidth adaptation algorithms have emerged, each aiming to improve the user QoE using different session information e.g. TCP throughput, buffer occupancy, download time... Notwithstanding the difference in their implementation, they mostly use the same inputs to adapt to the varying conditions of the media session. In this paper, we show that it is possible to predict the bitrate decision of any ABR algorithm, thanks to machine learning techniques, and supervised classification in particular. This approach has the benefit of being generic, hence it does not require any knowledge about the player ABR algorithm itself, but assumes that whatever the logic behind, it will use a common set of input features. Then, using machine learning feature selection, it is possible to predict the relevant features and then train the model over real observation. We test our approach using simulations on well-known ABR algorithms, then we verify the results on commercial closed-source players, using different VoD and Live realistic data sets. The results show that both Random Forest and Gradient Boosting achieve a very high prediction accuracy among other ML-classifier.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用监督学习算法的ABR预测
随着互联网上视频流量的大量增加,HTTP自适应流媒体已经成为信息娱乐内容传输的主要技术。在这种情况下,出现了许多带宽自适应算法,每个算法都旨在使用不同的会话信息(如TCP吞吐量、缓冲区占用、下载时间等)来提高用户的QoE。尽管它们在执行上有所不同,但它们大多使用相同的输入来适应媒体会话的不同条件。在本文中,我们证明了有可能预测任何ABR算法的比特率决策,这要归功于机器学习技术,特别是监督分类。这种方法具有通用性,因此它不需要玩家ABR算法本身的任何知识,但假设无论背后的逻辑是什么,它都将使用一组通用的输入功能。然后,使用机器学习特征选择,可以预测相关特征,然后在实际观察上训练模型。我们使用著名的ABR算法模拟来测试我们的方法,然后我们使用不同的VoD和Live现实数据集在商业闭源播放器上验证结果。结果表明,随机森林和梯度增强在其他ml分类器中都取得了非常高的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Leveraging Active Perception for Improving Embedding-based Deep Face Recognition Subjective Test Dataset and Meta-data-based Models for 360° Streaming Video Quality The Suitability of Texture Vibrations Based on Visually Perceived Virtual Textures in Bimodal and Trimodal Conditions DEMI: Deep Video Quality Estimation Model using Perceptual Video Quality Dimensions Learned BRIEF – transferring the knowledge from hand-crafted to learning-based descriptors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1