Massively parallel volume rendering using 2–3 swap image compositing

Hongfeng Yu, Chaoli Wang, K. Ma
{"title":"Massively parallel volume rendering using 2–3 swap image compositing","authors":"Hongfeng Yu, Chaoli Wang, K. Ma","doi":"10.1145/1508044.1508084","DOIUrl":null,"url":null,"abstract":"The ever-increasing amounts of simulation data produced by scientists demand high-end parallel visualization capability. However, image compositing, which requires interprocessor communication, is often the bottleneck stage for parallel rendering of large volume data sets. Existing image compositing solutions either incur a large number of messages exchanged among processors (such as the direct send method), or limit the number of processors that can be effectively utilized (such as the binary swap method). We introduce a new image compositing algorithm, called 2-3 swap, which combines the flexibility of the direct send method and the optimality of the binary swap method. The 2-3 swap algorithm allows an arbitrary number of processors to be used for compositing, and fully utilizes all participating processors throughout the course of the compositing. We experiment with this image compositing solution on a supercomputer with thousands of processors, and demonstrate its great flexibility as well as scalability.","PeriodicalId":230761,"journal":{"name":"2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"108","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1508044.1508084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 108

Abstract

The ever-increasing amounts of simulation data produced by scientists demand high-end parallel visualization capability. However, image compositing, which requires interprocessor communication, is often the bottleneck stage for parallel rendering of large volume data sets. Existing image compositing solutions either incur a large number of messages exchanged among processors (such as the direct send method), or limit the number of processors that can be effectively utilized (such as the binary swap method). We introduce a new image compositing algorithm, called 2-3 swap, which combines the flexibility of the direct send method and the optimality of the binary swap method. The 2-3 swap algorithm allows an arbitrary number of processors to be used for compositing, and fully utilizes all participating processors throughout the course of the compositing. We experiment with this image compositing solution on a supercomputer with thousands of processors, and demonstrate its great flexibility as well as scalability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模并行体渲染使用2-3交换图像合成
科学家产生的越来越多的仿真数据需要高端的并行可视化能力。然而,需要处理器间通信的图像合成往往是大容量数据集并行渲染的瓶颈阶段。现有的图像合成解决方案要么导致处理器之间交换大量消息(如直接发送方法),要么限制可以有效利用的处理器数量(如二进制交换方法)。本文提出了一种新的图像合成算法,称为2-3交换算法,它结合了直接发送方法的灵活性和二进制交换方法的最优性。2-3交换算法允许使用任意数量的处理器进行合成,并在整个合成过程中充分利用所有参与的处理器。我们在一台拥有数千个处理器的超级计算机上对这种图像合成解决方案进行了实验,并展示了其巨大的灵活性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient auction-based grid reservations using dynamic programming Scientific application-based performance comparison of SGI Altix 4700, IBM POWER5+, and SGI ICE 8200 supercomputers Nimrod/K: Towards massively parallel dynamic Grid workflows Global Trees: A framework for linked data structures on distributed memory parallel systems Bandwidth intensive 3-D FFT kernel for GPUs using CUDA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1