{"title":"RLS-based Interference Cancellation","authors":"R. Punchalard, Aphirak Thitinauremit","doi":"10.1109/ecti-con49241.2020.9158282","DOIUrl":null,"url":null,"abstract":"Adaptive Sinusoidal interference cancellation (ASIC) based on recursive least square (RLS) algorithm is proposed. RLS algorithm allows us to use a recursion instead of inversion of the autocorrelation matrix to evaluate the optimum weights. The main advantage of RLS algorithm is that it exhibits extremely high rate of convergence. Computer simulations are performed to demonstrate the performance of the proposed algorithm.","PeriodicalId":371552,"journal":{"name":"2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","volume":"351 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ecti-con49241.2020.9158282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Adaptive Sinusoidal interference cancellation (ASIC) based on recursive least square (RLS) algorithm is proposed. RLS algorithm allows us to use a recursion instead of inversion of the autocorrelation matrix to evaluate the optimum weights. The main advantage of RLS algorithm is that it exhibits extremely high rate of convergence. Computer simulations are performed to demonstrate the performance of the proposed algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于rls的干扰消除
提出了基于递推最小二乘(RLS)算法的自适应正弦干扰消除(ASIC)。RLS算法允许我们使用递归而不是自相关矩阵的反转来评估最优权重。RLS算法的主要优点是具有极高的收敛速度。计算机仿真验证了所提算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Simple Tunable Biquadratic Digital Bandpass Filter Design for Spectrum Sensing in Cognitive Radio ElectricVehicle Simulator Using DC Drives Comparison of Machine Learning Algorithm’s on Self-Driving Car Navigation using Nvidia Jetson Nano Enhancing CNN Based Knowledge Graph Embedding Algorithms Using Auxiliary Vectors: A Case Study of Wordnet Knowledge Graph A Study of Radiated EMI Predictions from Measured Common-mode Currents for Switching Power Supplies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1