Wide Band Gap Semiconductor Devices for Power Electronic Converters

S. M. S. H. Rafin, Roni Ahmed, O. Mohammed
{"title":"Wide Band Gap Semiconductor Devices for Power Electronic Converters","authors":"S. M. S. H. Rafin, Roni Ahmed, O. Mohammed","doi":"10.1109/3D-PEIM55914.2023.10052586","DOIUrl":null,"url":null,"abstract":"Wide Band Gap (WBG) semiconductors provide superior material qualities that could allow for the functioning of prospective power devices at higher temperatures, voltages, and switching rates than is now possible with Si technology. However, Si is reaching its limits, and as a result, Si-based semiconductors have restricted voltage blocking, limited heat transmission, limited efficiency, and limited maximum junction temperature. Wide-band gap materials like Silicon Carbide (SiC) and Gallium Nitride (GaN) have recently been used to construct power semiconductor devices. The development of new power converters and the significant improvement in the performance of current ones will be made possible using these new power semiconductor devices, resulting in an improvement in the efficiency of the electric energy transformations and more intelligent use of the electric energy. Due to their exceptional qualities, commercial availability of starting material, and maturity of their technological processes, SiC and GaN are now the more promising semiconductor materials for these new power devices. The introduction of these novel components in the converter has several ramifications that must be understood to fully profit from these devices. This study serves as a review that enumerates the traits and advancement of contemporary GaN and SiC power devices and assesses the condition of the research, and projects the future of semiconductor device applications. The issues and difficulties with GaN and SiC devices are also covered.","PeriodicalId":106578,"journal":{"name":"2023 Fourth International Symposium on 3D Power Electronics Integration and Manufacturing (3D-PEIM)","volume":"385 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Fourth International Symposium on 3D Power Electronics Integration and Manufacturing (3D-PEIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3D-PEIM55914.2023.10052586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Wide Band Gap (WBG) semiconductors provide superior material qualities that could allow for the functioning of prospective power devices at higher temperatures, voltages, and switching rates than is now possible with Si technology. However, Si is reaching its limits, and as a result, Si-based semiconductors have restricted voltage blocking, limited heat transmission, limited efficiency, and limited maximum junction temperature. Wide-band gap materials like Silicon Carbide (SiC) and Gallium Nitride (GaN) have recently been used to construct power semiconductor devices. The development of new power converters and the significant improvement in the performance of current ones will be made possible using these new power semiconductor devices, resulting in an improvement in the efficiency of the electric energy transformations and more intelligent use of the electric energy. Due to their exceptional qualities, commercial availability of starting material, and maturity of their technological processes, SiC and GaN are now the more promising semiconductor materials for these new power devices. The introduction of these novel components in the converter has several ramifications that must be understood to fully profit from these devices. This study serves as a review that enumerates the traits and advancement of contemporary GaN and SiC power devices and assesses the condition of the research, and projects the future of semiconductor device applications. The issues and difficulties with GaN and SiC devices are also covered.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于电力电子变换器的宽带隙半导体器件
宽带隙(WBG)半导体提供了优越的材料质量,可以使未来的功率器件在更高的温度、电压和开关速率下运行,而不是现在的Si技术。然而,硅正在达到其极限,因此,硅基半导体具有有限的电压阻塞,有限的传热,有限的效率和有限的最大结温。宽带隙材料如碳化硅(SiC)和氮化镓(GaN)最近被用于构建功率半导体器件。这些新型功率半导体器件将使新型功率变换器的开发和现有功率变换器性能的显著提高成为可能,从而提高电能转换的效率,使电能的使用更加智能化。由于其卓越的品质,起始材料的商业可用性以及其技术工艺的成熟度,SiC和GaN现在是这些新型功率器件中更有前途的半导体材料。在转换器中引入这些新组件有几个必须理解的后果,以充分利用这些设备。本研究回顾了当代GaN和SiC功率器件的特点和进展,评估了研究状况,并展望了半导体器件应用的未来。GaN和SiC器件的问题和困难也被涵盖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Power Systems on Chiplet: Inductor-Linked Multi-Output Switched-Capacitor Multi-Rail Power Delivery on Chiplets Laminate-Embedded Multimodal Energy Harvester for Multilevel Power Supply A Review of Power Electronic Converters for Electric Aircrafts Power Electronic Converters for Wind Power Generation Design Considerations for 48-V VRM: Architecture, Magnetics, and Performance Tradeoffs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1