PERQ

Zhiyong Wu, B. Kao, Tien-Hsuan Wu, Pengcheng Yin, Qun Liu
{"title":"PERQ","authors":"Zhiyong Wu, B. Kao, Tien-Hsuan Wu, Pengcheng Yin, Qun Liu","doi":"10.1145/3336191.3371782","DOIUrl":null,"url":null,"abstract":"A knowledge-based question-answering (KB-QA) system is one that answers natural-language questions by accessing information stored in a knowledge base (KB). Existing KB-QA systems generally register an accuracy of 70-80% for simple questions and less for more complex ones. We observe that certain questions are intrinsically difficult to answer correctly with existing systems. We propose the PERQ framework to address this issue. Given a question q, we perform three steps to boost answer accuracy: (1) (Prediction) We predict if q can be answered correctly by a KB-QA system S. (2) (Explanation) If S is predicted to fail q, we analyze them to determine the most likely reasons of the failure. (3) (Rectification) We use the prediction and explanation results to rectify the answer. We put forward tools to achieve the three steps and analyze their effectiveness. Our experiments show that the PERQ framework can significantly improve KB-QA systems' accuracies over simple questions.","PeriodicalId":319008,"journal":{"name":"Proceedings of the 13th International Conference on Web Search and Data Mining","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3336191.3371782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

A knowledge-based question-answering (KB-QA) system is one that answers natural-language questions by accessing information stored in a knowledge base (KB). Existing KB-QA systems generally register an accuracy of 70-80% for simple questions and less for more complex ones. We observe that certain questions are intrinsically difficult to answer correctly with existing systems. We propose the PERQ framework to address this issue. Given a question q, we perform three steps to boost answer accuracy: (1) (Prediction) We predict if q can be answered correctly by a KB-QA system S. (2) (Explanation) If S is predicted to fail q, we analyze them to determine the most likely reasons of the failure. (3) (Rectification) We use the prediction and explanation results to rectify the answer. We put forward tools to achieve the three steps and analyze their effectiveness. Our experiments show that the PERQ framework can significantly improve KB-QA systems' accuracies over simple questions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recurrent Memory Reasoning Network for Expert Finding in Community Question Answering Joint Recognition of Names and Publications in Academic Homepages LouvainNE Enhancing Re-finding Behavior with External Memories for Personalized Search Temporal Pattern of Retweet(s) Help to Maximize Information Diffusion in Twitter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1