Free-space optical link realized with microlensed components

E. Strzelecka, D.A. Louderback, K. Bertilsson, B. Thibeault, M. Mondry, L. Coldren
{"title":"Free-space optical link realized with microlensed components","authors":"E. Strzelecka, D.A. Louderback, K. Bertilsson, B. Thibeault, M. Mondry, L. Coldren","doi":"10.1109/ECTC.1997.606197","DOIUrl":null,"url":null,"abstract":"Higher computer clock speeds will require alternate technologies to overcome the performance limitations of backplane electrical interconnections. One such method is to use parallel free-space beams for board-to-board interconnects. We demonstrate a free-space optical link using 980 nm vertical-cavity lasers (VCLs) as transmitters and back-side illuminated double-pass Schottky diodes as receivers. These devices are integrated on-chip with refractive microlenses, resulting in components that can be used directly in systems, without the need for external optics. A single-mode dielectrically-apertured VCL of diameter 3.1 /spl mu/m integrated with a microlens, has a far-field divergence half-angle of /spl sim/1 degree, allowing for an interconnect length of /spl sim/5 mm. VCLs of this size have bandwidths /spl sim/15 GHz at powers /spl sim/1 mW, suitable for high-speed optical interconnects. We have studied the tolerance of the free-space link to mechanical misalignments and to fabrication variations by evaluating the power throughput and crosstalk from adjacent channels positioned on a 250 /spl mu/m pitch. The misalignment tolerances were also evaluated experimentally. We achieved data transmission at 400 Mbit/s with bit error rate (BER) <10/sup -12/ through the free-space system with microlensed components. The data rate is presently limited by the packaging, not the inherent bandwidth of the VCL. We have also demonstrated data transmission at 3 Gbit/s with BER<10/sup -12/ by launching signal from the microlensed VCL directly to a fiber-coupled high-speed receiver.","PeriodicalId":339633,"journal":{"name":"1997 Proceedings 47th Electronic Components and Technology Conference","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1997 Proceedings 47th Electronic Components and Technology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.1997.606197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Higher computer clock speeds will require alternate technologies to overcome the performance limitations of backplane electrical interconnections. One such method is to use parallel free-space beams for board-to-board interconnects. We demonstrate a free-space optical link using 980 nm vertical-cavity lasers (VCLs) as transmitters and back-side illuminated double-pass Schottky diodes as receivers. These devices are integrated on-chip with refractive microlenses, resulting in components that can be used directly in systems, without the need for external optics. A single-mode dielectrically-apertured VCL of diameter 3.1 /spl mu/m integrated with a microlens, has a far-field divergence half-angle of /spl sim/1 degree, allowing for an interconnect length of /spl sim/5 mm. VCLs of this size have bandwidths /spl sim/15 GHz at powers /spl sim/1 mW, suitable for high-speed optical interconnects. We have studied the tolerance of the free-space link to mechanical misalignments and to fabrication variations by evaluating the power throughput and crosstalk from adjacent channels positioned on a 250 /spl mu/m pitch. The misalignment tolerances were also evaluated experimentally. We achieved data transmission at 400 Mbit/s with bit error rate (BER) <10/sup -12/ through the free-space system with microlensed components. The data rate is presently limited by the packaging, not the inherent bandwidth of the VCL. We have also demonstrated data transmission at 3 Gbit/s with BER<10/sup -12/ by launching signal from the microlensed VCL directly to a fiber-coupled high-speed receiver.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用微透镜元件实现自由空间光链路
更高的计算机时钟速度将需要替代技术来克服背板电气互连的性能限制。其中一种方法是使用平行自由空间梁进行板对板互连。我们演示了使用980 nm垂直腔激光器(vcl)作为发射器和背面照明双通肖特基二极管作为接收器的自由空间光链路。这些器件与折射微透镜集成在芯片上,从而产生可直接用于系统的组件,而不需要外部光学器件。直径3.1 /spl μ m的单模介电孔径VCL与微透镜集成,远场发散半角为/spl μ m/1度,允许互连长度为/spl μ m/ 5mm。这种尺寸的vcl在功率/spl sim/1 mW时带宽/spl sim/15 GHz,适用于高速光互连。我们通过评估位于250 /spl mu/m间距上的相邻通道的功率吞吐量和串扰,研究了自由空间链路对机械失调和制造变化的容错性。对误差公差进行了实验评价。我们通过带有微透镜组件的自由空间系统,实现了误码率<10/sup -12/的400 Mbit/s的数据传输。数据速率目前受到封装的限制,而不是VCL的固有带宽。我们还演示了通过将信号从微透镜VCL直接发射到光纤耦合高速接收器,在BER<10/sup -12/的情况下以3gbit /s的速度传输数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High density optical interconnects for board and backplane applications using VCSELs and polymer waveguides Evaluation of plastic package delamination via reliability testing and fracture mechanics approach Mid-frequency simultaneous switching noise in computer systems Distance learning paradigms in electronics packaging: a national course on thermal design of electronic products Mechanical and electrical characterization of a dendrite connector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1