Fine-Tuning A Lightweight Convolutional Neural Networks for COVID-19 Diagnosis

Jaturong Kongmanee, Thanyathorn Thanapattheerakul
{"title":"Fine-Tuning A Lightweight Convolutional Neural Networks for COVID-19 Diagnosis","authors":"Jaturong Kongmanee, Thanyathorn Thanapattheerakul","doi":"10.1145/3429210.3429218","DOIUrl":null,"url":null,"abstract":"In this paper, we compare the performance of the deep neural network-based image classifiers and fine-tune with different hyperparameter configurations for an automatic COVID-19 diagnosis from various and limited chest x-ray image dataset provided by Deep Learning and Artificial Intelligence Summer School 3 (DLAI3). We show that high accuracy results can be obtained using the transfer learning technique combined with a well fine-tuned Convolutional Neural Network. Moreover, we seek for not only smaller deep learning architectures with less trainable parameters to reduce the training and inference time of AI applications for mobile and edge devices, but also relatively high performance. The results from the DLAI3 hackathon session show that our model outperforms other submitted models in terms of effectiveness and generalization.","PeriodicalId":164790,"journal":{"name":"CSBio '20: Proceedings of the Eleventh International Conference on Computational Systems-Biology and Bioinformatics","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSBio '20: Proceedings of the Eleventh International Conference on Computational Systems-Biology and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3429210.3429218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we compare the performance of the deep neural network-based image classifiers and fine-tune with different hyperparameter configurations for an automatic COVID-19 diagnosis from various and limited chest x-ray image dataset provided by Deep Learning and Artificial Intelligence Summer School 3 (DLAI3). We show that high accuracy results can be obtained using the transfer learning technique combined with a well fine-tuned Convolutional Neural Network. Moreover, we seek for not only smaller deep learning architectures with less trainable parameters to reduce the training and inference time of AI applications for mobile and edge devices, but also relatively high performance. The results from the DLAI3 hackathon session show that our model outperforms other submitted models in terms of effectiveness and generalization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于轻量级卷积神经网络的COVID-19诊断
在本文中,我们比较了基于深度神经网络的图像分类器和微调在不同超参数配置下的性能,用于自动诊断COVID-19,这些数据来自深度学习和人工智能暑期学校3 (DLAI3)提供的各种有限的胸部x射线图像数据集。我们表明,使用迁移学习技术结合良好的微调卷积神经网络可以获得高精度的结果。此外,我们不仅寻求具有较少可训练参数的更小的深度学习架构,以减少移动和边缘设备的AI应用程序的训练和推理时间,而且还寻求相对高性能。DLAI3黑客马拉松会议的结果表明,我们的模型在有效性和泛化方面优于其他提交的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting Dihydroartemisinin Resistance in Plasmodium falciparum using Pathway Activity Inference An Image Segment-based Classification for Chest X-Ray Image Classification of Protein Crystallization Images using EfficientNet with Data Augmentation Covid 19 Prediction from X Ray Images Using Fully Connected Convolutional Neural Network Uncovering RNA and DNA Modifications from Native Sequences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1