Covariate Distribution Balance via Propensity Scores

Pedro H. C. Sant’Anna, Xiaojun Song, Qi Xu
{"title":"Covariate Distribution Balance via Propensity Scores","authors":"Pedro H. C. Sant’Anna, Xiaojun Song, Qi Xu","doi":"10.2139/ssrn.3258551","DOIUrl":null,"url":null,"abstract":"This paper proposes new estimators for the propensity score that aim to maximize the covariate distribution balance among different treatment groups. Heuristically, our proposed procedure attempts to estimate a propensity score model by making the underlying covariate distribution of different treatment groups as close to each other as possible. Our estimators are data-driven, do not rely on tuning parameters such as bandwidths, admit an asymptotic linear representation, and can be used to estimate different treatment effect parameters under different identifying assumptions, including unconfoundedness and local treatment effects. We derive the asymptotic properties of inverse probability weighted estimators for the average, distributional, and quantile treatment effects based on the proposed propensity score estimator and illustrate their finite sample performance via Monte Carlo simulations and two empirical applications.","PeriodicalId":275625,"journal":{"name":"PSN: Quasi-Experiment (Topic)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSN: Quasi-Experiment (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3258551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

This paper proposes new estimators for the propensity score that aim to maximize the covariate distribution balance among different treatment groups. Heuristically, our proposed procedure attempts to estimate a propensity score model by making the underlying covariate distribution of different treatment groups as close to each other as possible. Our estimators are data-driven, do not rely on tuning parameters such as bandwidths, admit an asymptotic linear representation, and can be used to estimate different treatment effect parameters under different identifying assumptions, including unconfoundedness and local treatment effects. We derive the asymptotic properties of inverse probability weighted estimators for the average, distributional, and quantile treatment effects based on the proposed propensity score estimator and illustrate their finite sample performance via Monte Carlo simulations and two empirical applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过倾向得分的协变量分布平衡
本文提出了新的倾向评分估计,旨在最大化不同处理组之间的协变量分布平衡。启发式地,我们提出的程序试图通过使不同治疗组的潜在协变量分布尽可能接近彼此来估计倾向评分模型。我们的估计器是数据驱动的,不依赖于带宽等调谐参数,承认渐近线性表示,并可用于估计不同识别假设下的不同治疗效果参数,包括非混杂性和局部治疗效果。基于所提出的倾向分数估计量,我们推导了平均、分布和分位数处理效果的逆概率加权估计量的渐近性质,并通过蒙特卡罗模拟和两个经验应用说明了它们的有限样本性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mobility Restrictions and Risk-Related Agency Conflicts Identification Using Border Approaches and IVs Non-Linear Incentives, Worker Productivity, and Firm Profits: Evidence from a Quasi-Experiment Covariate Distribution Balance via Propensity Scores Time Distance and Mutual Fund Holding Horizon: Evidence from a Quasi-Natural Experiment Setting of High-Speed Railway Opening
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1