{"title":"Unsupervised learning strategies for the detection and classification of transient phenomena on electric power distribution systems","authors":"D.L. Lubkeman, C.D. Fallon, A. Girgis","doi":"10.1109/ANN.1991.213506","DOIUrl":null,"url":null,"abstract":"A number of utilities are currently installing high-speed data acquisition equipment in their distribution substations. This equipment will make it possible to record the transient waveforms due to events such as low and high-impedance faults, capacitor switching, and load switching. The authors describe the potential of applying unsupervised learning strategies to the classification of the various events observed by a substation recorder. Several strategies are tested using simulation studies and the effectiveness of unsupervised learning is compared to current classification strategies as well as supervised learning.<<ETX>>","PeriodicalId":119713,"journal":{"name":"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANN.1991.213506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
A number of utilities are currently installing high-speed data acquisition equipment in their distribution substations. This equipment will make it possible to record the transient waveforms due to events such as low and high-impedance faults, capacitor switching, and load switching. The authors describe the potential of applying unsupervised learning strategies to the classification of the various events observed by a substation recorder. Several strategies are tested using simulation studies and the effectiveness of unsupervised learning is compared to current classification strategies as well as supervised learning.<>