Towards novel smart wearable sensors to classify subject-specific human walking activities

Jonathan C. F. da Silva, Vicente José Peixoto de Amorim, P. S. O. Lazaroni, R. A. R. Oliveira, Mateus C. Silva
{"title":"Towards novel smart wearable sensors to classify subject-specific human walking activities","authors":"Jonathan C. F. da Silva, Vicente José Peixoto de Amorim, P. S. O. Lazaroni, R. A. R. Oliveira, Mateus C. Silva","doi":"10.5753/sbesc_estendido.2022.228153","DOIUrl":null,"url":null,"abstract":"In this century, smart devices are increasingly present in our lives, such as at work, sports, or household chores. In this context, we have wearable devices that can help people with health monitoring or physical performance in sports activities. With the integration of artificial intelligence (AI), these wearable devices can identify injuries in athletes or care for the elderly in rehabilitation from human activity recognition (HAR). AI techniques are commonly applied for pattern recognition, such as image classification or HAR. In this context, we seek to develop a smart wearable device to recognize walking activities. In order to improve the identification of these tasks through AI algorithms, we propose the fusion of data between four sensors called SPUs. Each SPU has NodeMCU ESP-32 and BNO080 IMU hardware in its architecture. The data from these hardware provides information in high precision. A zero W raspberry pi collected this information. After extracting and manipulating this data, we trained a deep learning model. The model accuracy was higher than 92% reaching an overall accuracy of 97%. Therefore, the smart wearable device showed a new tool for recognizing walking activity, which could be applied in the future to recognize more complex tasks.","PeriodicalId":305719,"journal":{"name":"Anais Estendidos do XII Simpósio Brasileiro de Engenharia de Sistemas Computacionais (SBESC Estendido 2022)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais Estendidos do XII Simpósio Brasileiro de Engenharia de Sistemas Computacionais (SBESC Estendido 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbesc_estendido.2022.228153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this century, smart devices are increasingly present in our lives, such as at work, sports, or household chores. In this context, we have wearable devices that can help people with health monitoring or physical performance in sports activities. With the integration of artificial intelligence (AI), these wearable devices can identify injuries in athletes or care for the elderly in rehabilitation from human activity recognition (HAR). AI techniques are commonly applied for pattern recognition, such as image classification or HAR. In this context, we seek to develop a smart wearable device to recognize walking activities. In order to improve the identification of these tasks through AI algorithms, we propose the fusion of data between four sensors called SPUs. Each SPU has NodeMCU ESP-32 and BNO080 IMU hardware in its architecture. The data from these hardware provides information in high precision. A zero W raspberry pi collected this information. After extracting and manipulating this data, we trained a deep learning model. The model accuracy was higher than 92% reaching an overall accuracy of 97%. Therefore, the smart wearable device showed a new tool for recognizing walking activity, which could be applied in the future to recognize more complex tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向新型智能可穿戴传感器,对特定主体的人类行走活动进行分类
在本世纪,智能设备越来越多地出现在我们的生活中,比如在工作、运动或家务中。在这种情况下,我们有可穿戴设备,可以帮助人们进行健康监测或体育活动中的身体表现。通过人工智能(AI)的整合,这些可穿戴设备可以通过人体活动识别(HAR)识别运动员的损伤或照顾康复中的老年人。人工智能技术通常用于模式识别,如图像分类或HAR。在这种情况下,我们寻求开发一种智能可穿戴设备来识别步行活动。为了通过人工智能算法提高对这些任务的识别,我们提出了四个传感器之间的数据融合,称为spu。每个SPU在其架构中都有NodeMCU ESP-32和BNO080 IMU硬件。来自这些硬件的数据提供了高精度的信息。一个0 W树莓派收集了这个信息。在提取和处理这些数据之后,我们训练了一个深度学习模型。模型准确率高于92%,总体准确率达到97%。因此,智能可穿戴设备展示了一种识别步行活动的新工具,未来可以应用于识别更复杂的任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metodologia Automatizada para Descrever a Cobertura de Sinal Móvel em Rodovias: Estudo de Caso Considerando Incerteza de Dados Um Estudo de Desempenho do HWMP em Ambientes de Cidades Inteligentes Desenvolvendo Simulações de Uso de Drones em Cidades Inteligentes Evaluation of low-cost sensors for real-time water quality monitoring Avaliando Estratégias de Comunicação em Redes de Área Corporal sem Fio sob Diferentes Contextos de Mobilidade, Interferência e Carga de Aplicação
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1