Fault identification in an AC-DC transmission system using neural networks

N. Kandil, V. Sood, K. Khorasani, R. Patel
{"title":"Fault identification in an AC-DC transmission system using neural networks","authors":"N. Kandil, V. Sood, K. Khorasani, R. Patel","doi":"10.1109/PICA.1991.160590","DOIUrl":null,"url":null,"abstract":"The possibility of using neural networks to identify faults that may have occurred in an AC-DC power system is explored. Based on the ability of these networks to distinguish reliably between different types of fault, appropriate control measures can be taken to improve the dynamic performance of the AC-DC power system. Three different neural network architectures to distinguish between different types of fault on the AC-DC system are proposed, and a comparison between them is made.<<ETX>>","PeriodicalId":287152,"journal":{"name":"[Proceedings] Conference Papers 1991 Power Industry Computer Application Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"102","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] Conference Papers 1991 Power Industry Computer Application Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PICA.1991.160590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 102

Abstract

The possibility of using neural networks to identify faults that may have occurred in an AC-DC power system is explored. Based on the ability of these networks to distinguish reliably between different types of fault, appropriate control measures can be taken to improve the dynamic performance of the AC-DC power system. Three different neural network architectures to distinguish between different types of fault on the AC-DC system are proposed, and a comparison between them is made.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的交直流输电系统故障识别
探讨了用神经网络识别交直流电力系统可能发生的故障的可能性。基于这些网络可靠区分不同类型故障的能力,可以采取适当的控制措施来改善交直流电力系统的动态性能。提出了三种不同的神经网络结构来区分交直流系统中不同类型的故障,并对它们进行了比较
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An adaptive scheme for digital protection of power transformers Handling discardable measurements in power system state estimation The uses of an operator training simulator for system restoration Monitoring for geomagnetic induced current flow effects using existing EMS telemetering Real-time data exchange for on-line security assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1