Computer vision approaches for vehicle sideslip angle estimation

Leonardo Serena, B. Lenzo, M. Bruschetta, R. Castro
{"title":"Computer vision approaches for vehicle sideslip angle estimation","authors":"Leonardo Serena, B. Lenzo, M. Bruschetta, R. Castro","doi":"10.1109/MetroAutomotive57488.2023.10219124","DOIUrl":null,"url":null,"abstract":"Vehicle sideslip angle, defined as the angle between the longitudinal axis of a vehicle and its velocity vector, is a crucial parameter in vehicle dynamics. Unfortunately vehicle sideslip angle is very hard to access directly, therefore a variety of estimation methods have been developed so far. Such estimation methods are essentially based on model-based approaches or neural networks. This paper looks at the problem from a fresh angle, by investigating possible solutions to measure vehicle sideslip angle via computer vision techniques, harnessing recent improvements in computer vision algorithms. Preliminary experiments on a radio-controlled scaled vehicle show promising results using the \"phase correlation\" algorithm.","PeriodicalId":115847,"journal":{"name":"2023 IEEE International Workshop on Metrology for Automotive (MetroAutomotive)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Workshop on Metrology for Automotive (MetroAutomotive)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MetroAutomotive57488.2023.10219124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Vehicle sideslip angle, defined as the angle between the longitudinal axis of a vehicle and its velocity vector, is a crucial parameter in vehicle dynamics. Unfortunately vehicle sideslip angle is very hard to access directly, therefore a variety of estimation methods have been developed so far. Such estimation methods are essentially based on model-based approaches or neural networks. This paper looks at the problem from a fresh angle, by investigating possible solutions to measure vehicle sideslip angle via computer vision techniques, harnessing recent improvements in computer vision algorithms. Preliminary experiments on a radio-controlled scaled vehicle show promising results using the "phase correlation" algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
车辆侧滑角估计的计算机视觉方法
车辆侧滑角是车辆动力学中的一个重要参数,其定义为车辆纵轴与其速度矢量之间的夹角。由于车辆侧滑角很难直接得到,因此目前已经发展出了各种各样的侧滑角估计方法。这种估计方法本质上是基于基于模型的方法或神经网络。本文从一个全新的角度看待这个问题,利用计算机视觉算法的最新改进,研究了通过计算机视觉技术测量车辆侧滑角的可能解决方案。初步实验表明,采用“相位相关”算法的无线电控制比例飞行器取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A strain-based estimation of tire-road forces through a supervised learning approach Anti-Interference Algorithm of Environment-Aware Millimeter Wave Radar An Adaptive TinyML Unsupervised Online Learning Algorithm for Driver Behavior Analysis Research on Automatic Calibration Method of Transmission Loss for Millimeter-Wave Radar Testing System in Intelligent Vehicle Exponential degradation model for Remaining Useful Life estimation of electrolytic capacitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1