Haojin Yang, Maria Siebert, Patrick Lühne, Harald Sack, C. Meinel
{"title":"Automatic Lecture Video Indexing Using Video OCR Technology","authors":"Haojin Yang, Maria Siebert, Patrick Lühne, Harald Sack, C. Meinel","doi":"10.1109/ISM.2011.26","DOIUrl":null,"url":null,"abstract":"During the last years, digital lecture libraries and lecture video portals have become more and more popular. However, finding efficient methods for indexing multimedia still remains a challenging task. Since the text displayed in a lecture video is closely related to the lecture content, it provides a valuable source for indexing and retrieving lecture contents. In this paper, we present an approach for automatic lecture video indexing based on video OCR technology. We have developed a novel video segmenter for automated slide video structure analysis and a weighted DCT (discrete cosines transformation) based text detector. A dynamic image constrast/brightness adaption serves the purpose of enhancing the text image quality to make it processible by existing common OCR software. Time-based text occurence information as well as the analyzed text content are further used for indexing. We prove the accuracy of the proposed approach by evaluation.","PeriodicalId":339410,"journal":{"name":"2011 IEEE International Symposium on Multimedia","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2011.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42
Abstract
During the last years, digital lecture libraries and lecture video portals have become more and more popular. However, finding efficient methods for indexing multimedia still remains a challenging task. Since the text displayed in a lecture video is closely related to the lecture content, it provides a valuable source for indexing and retrieving lecture contents. In this paper, we present an approach for automatic lecture video indexing based on video OCR technology. We have developed a novel video segmenter for automated slide video structure analysis and a weighted DCT (discrete cosines transformation) based text detector. A dynamic image constrast/brightness adaption serves the purpose of enhancing the text image quality to make it processible by existing common OCR software. Time-based text occurence information as well as the analyzed text content are further used for indexing. We prove the accuracy of the proposed approach by evaluation.