{"title":"Estimating object hardness with a GelSight touch sensor","authors":"Wenzhen Yuan, M. Srinivasan, E. Adelson","doi":"10.1109/IROS.2016.7759057","DOIUrl":null,"url":null,"abstract":"Hardness sensing is a valuable capability for a robot touch sensor. We describe a novel method of hardness sensing that does not require accurate control of contact conditions. A GelSight sensor is a tactile sensor that provides high resolution tactile images, which enables a robot to infer object properties such as geometry and fine texture, as well as contact force and slip conditions. The sensor is pressed on silicone samples by a human or a robot and we measure the sample hardness only with data from the sensor, without a separate force sensor and without precise knowledge of the contact trajectory. We describe the features that show object hardness. For hemispherical objects, we develop a model to measure the sample hardness, and the estimation error is about 4% in the range of 8 Shore 00 to 45 Shore A. With this technology, a robot is able to more easily infer the hardness of the touched objects, thereby improving its object recognition as well as manipulation strategy.","PeriodicalId":296337,"journal":{"name":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"289 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2016.7759057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55
Abstract
Hardness sensing is a valuable capability for a robot touch sensor. We describe a novel method of hardness sensing that does not require accurate control of contact conditions. A GelSight sensor is a tactile sensor that provides high resolution tactile images, which enables a robot to infer object properties such as geometry and fine texture, as well as contact force and slip conditions. The sensor is pressed on silicone samples by a human or a robot and we measure the sample hardness only with data from the sensor, without a separate force sensor and without precise knowledge of the contact trajectory. We describe the features that show object hardness. For hemispherical objects, we develop a model to measure the sample hardness, and the estimation error is about 4% in the range of 8 Shore 00 to 45 Shore A. With this technology, a robot is able to more easily infer the hardness of the touched objects, thereby improving its object recognition as well as manipulation strategy.