Damage detection from aerial images via convolutional neural networks

A. Fujita, Ken Sakurada, T. Imaizumi, R. Ito, S. Hikosaka, R. Nakamura
{"title":"Damage detection from aerial images via convolutional neural networks","authors":"A. Fujita, Ken Sakurada, T. Imaizumi, R. Ito, S. Hikosaka, R. Nakamura","doi":"10.23919/MVA.2017.7986759","DOIUrl":null,"url":null,"abstract":"This paper explores the effective use of Convolutional Neural Networks (CNNs) in the context of washed-away building detection from pre- and post-tsunami aerial images. To this end, we compile a dedicated, labeled aerial image dataset to construct models that classify whether a building is washed-away. Each datum in the set is a pair of pre- and post-tsunami image patches and encompasses a target building at the center of the patch. Using this dataset, we comprehensively evaluate CNNs from a practical-application viewpoint, e.g., input scenarios (pre-tsunami images are not always available), input scales (building size varies) and different configurations for CNNs. The experimental results show that our CNN-based washed-away detection system achieves 94–96% classification accuracy across all conditions, indicating the promising applicability of CNNs for washed-away building detection.","PeriodicalId":193716,"journal":{"name":"2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA)","volume":"269 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"104","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA.2017.7986759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 104

Abstract

This paper explores the effective use of Convolutional Neural Networks (CNNs) in the context of washed-away building detection from pre- and post-tsunami aerial images. To this end, we compile a dedicated, labeled aerial image dataset to construct models that classify whether a building is washed-away. Each datum in the set is a pair of pre- and post-tsunami image patches and encompasses a target building at the center of the patch. Using this dataset, we comprehensively evaluate CNNs from a practical-application viewpoint, e.g., input scenarios (pre-tsunami images are not always available), input scales (building size varies) and different configurations for CNNs. The experimental results show that our CNN-based washed-away detection system achieves 94–96% classification accuracy across all conditions, indicating the promising applicability of CNNs for washed-away building detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积神经网络的航空图像损伤检测
本文探讨了卷积神经网络(cnn)在海啸前和海啸后航空图像中被冲走建筑物检测的有效使用。为此,我们编译了一个专用的,标记的航空图像数据集来构建模型来分类建筑物是否被冲走。集合中的每个基准面都是一对海啸前和海啸后的图像补丁,并包含在补丁中心的目标建筑物。使用该数据集,我们从实际应用的角度全面评估cnn,例如,输入场景(海啸前的图像并不总是可用的),输入规模(建筑大小不同)和cnn的不同配置。实验结果表明,基于cnn的冲蚀检测系统在所有条件下的分类准确率均达到94-96%,表明cnn在冲蚀建筑检测中具有良好的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mixture particle filter with block jump biomechanics constraint for volleyball players lower body parts tracking Event based surveillance video synopsis using trajectory kinematics descriptors Banknote portrait detection using convolutional neural network Ball-like observation model and multi-peak distribution estimation based particle filter for 3D Ping-pong ball tracking FPGA implementation of high frame rate and ultra-low delay vision system with local and global parallel based matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1