EC: Embedded Systems Compartmentalization via Intra-Kernel Isolation

Arslan Khan, Dongyan Xu, D. Tian
{"title":"EC: Embedded Systems Compartmentalization via Intra-Kernel Isolation","authors":"Arslan Khan, Dongyan Xu, D. Tian","doi":"10.1109/SP46215.2023.10179285","DOIUrl":null,"url":null,"abstract":"Embedded systems comprise of low-power microcontrollers and constitute computing systems from IoT nodes to supercomputers. Unfortunately, due to the low power constraint, the security of these systems is often overlooked, leaving a huge attack surface. For instance, an attacker compromising a user task can access any kernel data structure. Existing work has applied compartmentalization to reduce the attack surface, but these systems either incur a high runtime overhead or require major modifications to existing firmware. In this paper, we present Embedded Compartmentalizer (EC), a comprehensive and automatic compartmentalization toolchain for Real-Time Operating Systems (RTOSs) and baremetal firmware. EC provides the Embedded Compartmentalizer Compiler (ECC) to automatically partition firmware into different compartments and enforces memory protection among them using the Embedded Compartmentalizer Kernel (ECK), a formally verified microkernel implementing a novel architecture for compartmentalizing firmware using intra-kernel isolation. Our evaluation shows that EC is 1.2x faster than state-of-the-art systems and can achieve up to 96.2% ROP gadget reduction in firmwares. EC provides a low-cost, practical, and effective compartmentalization solution for embedded systems with memory protection and debug hardware extension.","PeriodicalId":439989,"journal":{"name":"2023 IEEE Symposium on Security and Privacy (SP)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Symposium on Security and Privacy (SP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SP46215.2023.10179285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Embedded systems comprise of low-power microcontrollers and constitute computing systems from IoT nodes to supercomputers. Unfortunately, due to the low power constraint, the security of these systems is often overlooked, leaving a huge attack surface. For instance, an attacker compromising a user task can access any kernel data structure. Existing work has applied compartmentalization to reduce the attack surface, but these systems either incur a high runtime overhead or require major modifications to existing firmware. In this paper, we present Embedded Compartmentalizer (EC), a comprehensive and automatic compartmentalization toolchain for Real-Time Operating Systems (RTOSs) and baremetal firmware. EC provides the Embedded Compartmentalizer Compiler (ECC) to automatically partition firmware into different compartments and enforces memory protection among them using the Embedded Compartmentalizer Kernel (ECK), a formally verified microkernel implementing a novel architecture for compartmentalizing firmware using intra-kernel isolation. Our evaluation shows that EC is 1.2x faster than state-of-the-art systems and can achieve up to 96.2% ROP gadget reduction in firmwares. EC provides a low-cost, practical, and effective compartmentalization solution for embedded systems with memory protection and debug hardware extension.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EC:通过内核内隔离的嵌入式系统划分
嵌入式系统由低功耗微控制器组成,构成了从物联网节点到超级计算机的计算系统。不幸的是,由于低功耗的限制,这些系统的安全性往往被忽视,留下了巨大的攻击面。例如,攻击者破坏用户任务可以访问任何内核数据结构。现有的工作已经应用了分区来减少攻击面,但是这些系统要么产生很高的运行时开销,要么需要对现有固件进行重大修改。在本文中,我们提出嵌入式划分器(EC),一个全面和自动划分工具链,用于实时操作系统(RTOSs)和裸机固件。EC提供嵌入式分区器编译器(ECC)来自动将固件划分为不同的分区,并使用嵌入式分区器内核(ECK)在它们之间强制执行内存保护,ECK是一种经过正式验证的微内核,实现了一种使用内核内部隔离来划分固件的新架构。我们的评估表明,EC比最先进的系统快1.2倍,并且可以在固件中实现高达96.2%的ROP降低。EC为具有内存保护和调试硬件扩展的嵌入式系统提供了一种低成本、实用和有效的分区解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
TeSec: Accurate Server-side Attack Investigation for Web Applications PLA-LiDAR: Physical Laser Attacks against LiDAR-based 3D Object Detection in Autonomous Vehicle One Key to Rule Them All: Secure Group Pairing for Heterogeneous IoT Devices SoK: Cryptographic Neural-Network Computation SoK: A Critical Evaluation of Efficient Website Fingerprinting Defenses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1