Time analysis of regional structure of large-scale particle using an interactive visual system

IF 3.8 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Visual Informatics Pub Date : 2022-06-01 DOI:10.1016/j.visinf.2022.03.004
Yihan Zhang , Guan Li , Guihua Shan
{"title":"Time analysis of regional structure of large-scale particle using an interactive visual system","authors":"Yihan Zhang ,&nbsp;Guan Li ,&nbsp;Guihua Shan","doi":"10.1016/j.visinf.2022.03.004","DOIUrl":null,"url":null,"abstract":"<div><p>N-body numerical simulation is an important tool in astronomy. Scientists used this method to simulate the formation of structure of the universe, which is key to understanding how the universe formed. As research on this subject further develops, astronomers require a more precise method that enables expansion of the simulation and an increase in the number of simulation particles. However, retaining all temporal information is infeasible due to a lack of computer storage. In the circumstances, astronomers reserve temporal data at intervals, merging rough and baffling animations of universal evolution. In this study, we propose a deep-learning-assisted interpolation application to analyze the structure formation of the universe. First, we evaluate the feasibility of applying interpolation to generate an animation of the universal evolution through an experiment. Then, we demonstrate the superiority of deep convolutional neural network (DCNN) method by comparing its quality and performance with the actual results together with the results generated by other popular interpolation algorithms. In addition, we present PRSVis, an interactive visual analytics system that supports global volume rendering, local area magnification, and temporal animation generation. PRSVis allows users to visualize a global volume rendering, interactively select one cubic region from the rendering and intelligently produce a time-series animation of the high-resolution region using the deep-learning-assisted method. In summary, we propose an interactive visual system, integrated with the DCNN interpolation method that is validated through experiments, to help scientists easily understand the evolution of the particle region structure.</p></div>","PeriodicalId":36903,"journal":{"name":"Visual Informatics","volume":"6 2","pages":"Pages 14-24"},"PeriodicalIF":3.8000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468502X22000171/pdfft?md5=d3e25d7a79a6452e30ca6c3511bd690a&pid=1-s2.0-S2468502X22000171-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Informatics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468502X22000171","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

N-body numerical simulation is an important tool in astronomy. Scientists used this method to simulate the formation of structure of the universe, which is key to understanding how the universe formed. As research on this subject further develops, astronomers require a more precise method that enables expansion of the simulation and an increase in the number of simulation particles. However, retaining all temporal information is infeasible due to a lack of computer storage. In the circumstances, astronomers reserve temporal data at intervals, merging rough and baffling animations of universal evolution. In this study, we propose a deep-learning-assisted interpolation application to analyze the structure formation of the universe. First, we evaluate the feasibility of applying interpolation to generate an animation of the universal evolution through an experiment. Then, we demonstrate the superiority of deep convolutional neural network (DCNN) method by comparing its quality and performance with the actual results together with the results generated by other popular interpolation algorithms. In addition, we present PRSVis, an interactive visual analytics system that supports global volume rendering, local area magnification, and temporal animation generation. PRSVis allows users to visualize a global volume rendering, interactively select one cubic region from the rendering and intelligently produce a time-series animation of the high-resolution region using the deep-learning-assisted method. In summary, we propose an interactive visual system, integrated with the DCNN interpolation method that is validated through experiments, to help scientists easily understand the evolution of the particle region structure.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于交互式视觉系统的大尺度粒子区域结构时间分析
n体数值模拟是天文学研究的重要工具。科学家们用这种方法模拟了宇宙结构的形成,这是理解宇宙如何形成的关键。随着这一课题研究的进一步发展,天文学家需要一种更精确的方法来扩展模拟和增加模拟粒子的数量。然而,由于缺乏计算机存储,保留所有时间信息是不可行的。在这种情况下,天文学家每隔一段时间就保留时间数据,将宇宙演化的粗略和令人困惑的动画合并在一起。在这项研究中,我们提出了一个深度学习辅助插值应用程序来分析宇宙的结构形成。首先,我们通过实验评估了应用插值生成宇宙进化动画的可行性。然后,我们将深度卷积神经网络(DCNN)方法的质量和性能与实际结果以及其他流行的插值算法的结果进行了比较,证明了DCNN方法的优越性。此外,我们提出了PRSVis,这是一个交互式视觉分析系统,支持全局体积渲染,局部区域放大和时间动画生成。PRSVis允许用户可视化全局体渲染,交互式地从渲染中选择一个立方区域,并使用深度学习辅助方法智能地生成高分辨率区域的时间序列动画。综上所述,我们提出了一个交互式视觉系统,结合DCNN插值方法,并通过实验验证,以帮助科学家更容易地理解粒子区域结构的演变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Visual Informatics
Visual Informatics Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.70
自引率
3.30%
发文量
33
审稿时长
79 days
期刊最新文献
Intelligent CAD 2.0 Editorial Board RelicCARD: Enhancing cultural relics exploration through semantics-based augmented reality tangible interaction design JobViz: Skill-driven visual exploration of job advertisements Visual evaluation of graph representation learning based on the presentation of community structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1