Latent fingerprint enhancement via robust orientation field estimation

Soweon Yoon, Jianjiang Feng, Anil K. Jain
{"title":"Latent fingerprint enhancement via robust orientation field estimation","authors":"Soweon Yoon, Jianjiang Feng, Anil K. Jain","doi":"10.1109/IJCB.2011.6117482","DOIUrl":null,"url":null,"abstract":"Latent fingerprints, or simply latents, have been considered as cardinal evidence for identifying and convicting criminals. The amount of information available for identification from latents is often limited due to their poor quality, unclear ridge structure and occlusion with complex background or even other latent prints. We propose a latent fingerprint enhancement algorithm, which expects manually marked region of interest (ROI) and singular points. The core of the proposed algorithm is a robust orientation field estimation algorithm for latents. Short-time Fourier transform is used to obtain multiple orientation elements in each image block. This is followed by a hypothesize-and-test paradigm based on randomized RANSAC, which generates a set of hypothesized orientation fields. Experimental results on NIST SD27 latent fingerprint database show that the matching performance of a commercial matcher is significantly improved by utilizing the enhanced latent fingerprints produced by the proposed algorithm.","PeriodicalId":103913,"journal":{"name":"2011 International Joint Conference on Biometrics (IJCB)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"100","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB.2011.6117482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 100

Abstract

Latent fingerprints, or simply latents, have been considered as cardinal evidence for identifying and convicting criminals. The amount of information available for identification from latents is often limited due to their poor quality, unclear ridge structure and occlusion with complex background or even other latent prints. We propose a latent fingerprint enhancement algorithm, which expects manually marked region of interest (ROI) and singular points. The core of the proposed algorithm is a robust orientation field estimation algorithm for latents. Short-time Fourier transform is used to obtain multiple orientation elements in each image block. This is followed by a hypothesize-and-test paradigm based on randomized RANSAC, which generates a set of hypothesized orientation fields. Experimental results on NIST SD27 latent fingerprint database show that the matching performance of a commercial matcher is significantly improved by utilizing the enhanced latent fingerprints produced by the proposed algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于鲁棒方向场估计的潜在指纹增强
潜在的指纹,或简单的潜指纹,被认为是识别和定罪罪犯的主要证据。由于潜指纹质量差、脊状结构不清晰、背景复杂甚至其他潜指纹遮挡等原因,可用于识别潜指纹的信息量往往有限。提出了一种潜在指纹增强算法,该算法需要人工标记感兴趣区域和奇异点。该算法的核心是一种鲁棒的潜点方向场估计算法。利用短时傅里叶变换在每个图像块中获取多个方向元素。接下来是基于随机RANSAC的假设和测试范例,它生成一组假设的方向场。在NIST SD27潜指纹数据库上的实验结果表明,利用该算法生成的增强潜指纹,商用匹配器的匹配性能得到了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low-resolution face recognition via Simultaneous Discriminant Analysis Fundamental statistics of relatively permanent pigmented or vascular skin marks for criminal and victim identification Biometric recognition of newborns: Identification using palmprints Combination of multiple samples utilizing identification model in biometric systems Face and eye detection on hard datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1