{"title":"Two effective anomaly correction methods in embedded systems","authors":"Roghayeh Mojarad, H. Zarandi","doi":"10.1109/RTEST.2015.7369849","DOIUrl":null,"url":null,"abstract":"In this paper, two anomaly correction methods are proposed which are based on Markov and Stide detection methods. Both methods consist of three steps: 1) Training, 2) Anomaly detection and 3) Anomaly Correction. In training step, the Morkov-based method constructs a transition matrix; Stidebased method makes a database by events with their frequency. In detection step, when the probability of transition from previous event to current event does not reach a predefined threshold, the morkov-based method detects an anomaly. While, if frequency of unmatched events exceeds from the threshold value, Stide-based method determined an anomaly. In the correction step, the methods check the defined constraints for each anomalous event to find source of anomaly and a suitable way to correct the anomalous event. Evaluation of the proposed methods are done using a total of 7000 data sets. The window size of corrector and the number of injected anomalies varied between 3 and 5, 1 and 7, respectively. The experiments have been done to measure the correction coverage rate for Markov-based and Stide-based methods which are on average 77.66% and 60.9%, respectively. Area consumptions in Makov-based and Stide-based methods are on average 415.48μm2 and 239.61μm2, respectively.","PeriodicalId":376270,"journal":{"name":"2015 CSI Symposium on Real-Time and Embedded Systems and Technologies (RTEST)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 CSI Symposium on Real-Time and Embedded Systems and Technologies (RTEST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTEST.2015.7369849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
In this paper, two anomaly correction methods are proposed which are based on Markov and Stide detection methods. Both methods consist of three steps: 1) Training, 2) Anomaly detection and 3) Anomaly Correction. In training step, the Morkov-based method constructs a transition matrix; Stidebased method makes a database by events with their frequency. In detection step, when the probability of transition from previous event to current event does not reach a predefined threshold, the morkov-based method detects an anomaly. While, if frequency of unmatched events exceeds from the threshold value, Stide-based method determined an anomaly. In the correction step, the methods check the defined constraints for each anomalous event to find source of anomaly and a suitable way to correct the anomalous event. Evaluation of the proposed methods are done using a total of 7000 data sets. The window size of corrector and the number of injected anomalies varied between 3 and 5, 1 and 7, respectively. The experiments have been done to measure the correction coverage rate for Markov-based and Stide-based methods which are on average 77.66% and 60.9%, respectively. Area consumptions in Makov-based and Stide-based methods are on average 415.48μm2 and 239.61μm2, respectively.