Title Generation with Recurrent Neural Network

Yuko Hayashi, H. Yanagimoto
{"title":"Title Generation with Recurrent Neural Network","authors":"Yuko Hayashi, H. Yanagimoto","doi":"10.1109/IIAI-AAI.2016.109","DOIUrl":null,"url":null,"abstract":"We proposed a title generation method with a recurrent neural network using concepts of machine translation. The title generator consists of an encoder and a decoder and they are constructed with Long Short Term Memory, which is one of the recurrent neural networks. We construct a distributed representation of an article in the encoder and the decoder generates a title without extraction of an article. In some evaluational experiments we confirmed that our proposed method could generate appropriate titles from articles but in some articles the method generate random titles.","PeriodicalId":272739,"journal":{"name":"2016 5th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIAI-AAI.2016.109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We proposed a title generation method with a recurrent neural network using concepts of machine translation. The title generator consists of an encoder and a decoder and they are constructed with Long Short Term Memory, which is one of the recurrent neural networks. We construct a distributed representation of an article in the encoder and the decoder generates a title without extraction of an article. In some evaluational experiments we confirmed that our proposed method could generate appropriate titles from articles but in some articles the method generate random titles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于递归神经网络的标题生成
我们提出了一种基于递归神经网络的标题生成方法。标题生成器由编码器和解码器组成,它们由长短期记忆构成,长短期记忆是递归神经网络的一种。我们在编码器中构建文章的分布式表示,解码器生成标题而不提取文章。在一些评价实验中,我们证实了我们提出的方法可以从文章中生成合适的标题,但在一些文章中,该方法生成随机标题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Personalized Feedback System by Visual Biometric Data Analysis A Design and Implementation of Global Distributed POSIX File System on the Top of Multiple Independent Cloud Services Comparing Public Library Management under Designated Administrator System with Direct Management: Forcusing on Reference Service Robust Intelligent Total-Sliding-Mode Control for the Synchronization of Uncertain Chaotic Systems Extraction of Myocardial Fibrosis from MR Using Fuzzy Soft Thresholding Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1