Fatigue Characterization and Fractographic Analysis of Aluminium 6063 Alloy

S. M., R. S, Ahilan C.
{"title":"Fatigue Characterization and Fractographic Analysis of Aluminium 6063 Alloy","authors":"S. M., R. S, Ahilan C.","doi":"10.4018/978-1-7998-7864-3.ch008","DOIUrl":null,"url":null,"abstract":"Aluminium and its alloy are widely employed in various automobile and aircraft areas because of their unique specific strength and formability. Al alloys that have been employed in aerospace structural components will undergo dynamic loading, which leads to fatigue due to mechanical stress and thermal conditions. Considering studies toward the low cycle fatigue behaviour of Al alloys are significantly narrowed, this chapter sighted to the analysis of fatigue behaviour of Al 6063 alloy at the various total strain amplitude (TSA) of 0.4% and 0.8%, which performed through the low cycle fatigue testing machine at the frequency rate of 0.2 Hz. The test results show that for 0.4% TSA, the number of cycles to failure (N) is 1786, whereas as the TSA increases, N got reduced. For 0.8% TSA, the cycle to failure is 291 and samples undergone cyclic softening during the test. The rate of cyclic plastic strain raised up with the increase in the TSA. Crack propagation was observed along with the quasi-cleavage fracture for 0.4% TSA and cleavage fracture for 0.8% TSA.","PeriodicalId":170776,"journal":{"name":"Handbook of Research on Advancements in the Processing, Characterization, and Application of Lightweight Materials","volume":"242 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of Research on Advancements in the Processing, Characterization, and Application of Lightweight Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-7998-7864-3.ch008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aluminium and its alloy are widely employed in various automobile and aircraft areas because of their unique specific strength and formability. Al alloys that have been employed in aerospace structural components will undergo dynamic loading, which leads to fatigue due to mechanical stress and thermal conditions. Considering studies toward the low cycle fatigue behaviour of Al alloys are significantly narrowed, this chapter sighted to the analysis of fatigue behaviour of Al 6063 alloy at the various total strain amplitude (TSA) of 0.4% and 0.8%, which performed through the low cycle fatigue testing machine at the frequency rate of 0.2 Hz. The test results show that for 0.4% TSA, the number of cycles to failure (N) is 1786, whereas as the TSA increases, N got reduced. For 0.8% TSA, the cycle to failure is 291 and samples undergone cyclic softening during the test. The rate of cyclic plastic strain raised up with the increase in the TSA. Crack propagation was observed along with the quasi-cleavage fracture for 0.4% TSA and cleavage fracture for 0.8% TSA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
6063铝合金疲劳特性及断口分析
铝及其合金以其独特的比强度和可成形性,广泛应用于各种汽车和飞机领域。用于航空航天结构部件的铝合金将承受动态载荷,由于机械应力和热条件导致疲劳。考虑到对铝合金低周疲劳行为的研究范围明显缩小,本章着眼于通过低周疲劳试验机在0.2 Hz频率下进行的总应变幅(TSA)为0.4%和0.8%时Al 6063合金的疲劳行为分析。试验结果表明,当TSA为0.4%时,失效循环次数(N)为1786次,随着TSA的增加,失效循环次数(N)减小。当TSA为0.8%时,循环破坏为291次,试样在试验过程中经历了循环软化。循环塑性应变速率随TSA的增大而增大。当TSA含量为0.4%时,裂纹扩展伴随着准解理断裂,当TSA含量为0.8%时,裂纹扩展伴随着解理断裂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesis and Characterization of Lightweight Beryllium Chloro Silicate Phosphor The Role of Self-Assembly in Additive Manufacturing of Aerospace Applications Process Evaluation and Numerical Optimization in Friction Stir Welding of Dissimilar AMCs Fatigue Characterization and Fractographic Analysis of Aluminium 6063 Alloy Joining Techniques Like Welding in Lightweight Material Structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1