Emerging Graph Queries in Linked Data

Arijit Khan, Yinghui Wu, Xifeng Yan
{"title":"Emerging Graph Queries in Linked Data","authors":"Arijit Khan, Yinghui Wu, Xifeng Yan","doi":"10.1109/ICDE.2012.143","DOIUrl":null,"url":null,"abstract":"In a wide array of disciplines, data can be modeled as an interconnected network of entities, where various attributes could be associated with both the entities and the relations among them. Knowledge is often hidden in the complex structure and attributes inside these networks. While querying and mining these linked datasets are essential for various applications, traditional graph queries may not be able to capture the rich semantics in these networks. With the advent of complex information networks, new graph queries are emerging, including graph pattern matching and mining, similarity search, ranking and expert finding, graph aggregation and OLAP. These queries require both the topology and content information of the network data, and hence, different from classical graph algorithms such as shortest path, reach ability and minimum cut, which depend only on the structure of the network. In this tutorial, we shall give an introduction of the emerging graph queries, their indexing and resolution techniques, the current challenges and the future research directions.","PeriodicalId":321608,"journal":{"name":"2012 IEEE 28th International Conference on Data Engineering","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 28th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2012.143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

In a wide array of disciplines, data can be modeled as an interconnected network of entities, where various attributes could be associated with both the entities and the relations among them. Knowledge is often hidden in the complex structure and attributes inside these networks. While querying and mining these linked datasets are essential for various applications, traditional graph queries may not be able to capture the rich semantics in these networks. With the advent of complex information networks, new graph queries are emerging, including graph pattern matching and mining, similarity search, ranking and expert finding, graph aggregation and OLAP. These queries require both the topology and content information of the network data, and hence, different from classical graph algorithms such as shortest path, reach ability and minimum cut, which depend only on the structure of the network. In this tutorial, we shall give an introduction of the emerging graph queries, their indexing and resolution techniques, the current challenges and the future research directions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关联数据中的新兴图查询
在许多学科中,可以将数据建模为相互连接的实体网络,其中各种属性可以与实体及其之间的关系相关联。知识往往隐藏在这些网络内部复杂的结构和属性中。虽然查询和挖掘这些关联数据集对于各种应用都是必不可少的,但传统的图查询可能无法捕获这些网络中的丰富语义。随着复杂信息网络的出现,新的图形查询不断涌现,包括图形模式匹配和挖掘、相似度搜索、排序和专家查找、图形聚合和OLAP。这些查询既需要网络数据的拓扑信息,也需要网络数据的内容信息,因此不同于仅依赖于网络结构的经典图算法,如最短路径、到达能力和最小切割。在本教程中,我们将介绍新兴的图查询,它们的索引和解析技术,当前的挑战和未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Keyword Query Reformulation on Structured Data Accuracy-Aware Uncertain Stream Databases Extracting Analyzing and Visualizing Triangle K-Core Motifs within Networks Project Daytona: Data Analytics as a Cloud Service Automatic Extraction of Structured Web Data with Domain Knowledge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1