Multi-Vehicle Crashes Involving Large Trucks: A Random Parameter Discrete Outcome Modeling Approach

Mouyid Islam
{"title":"Multi-Vehicle Crashes Involving Large Trucks: A Random Parameter Discrete Outcome Modeling Approach","authors":"Mouyid Islam","doi":"10.5399/OSU/JTRF.54.1.4273","DOIUrl":null,"url":null,"abstract":"A growing concern on large-truck crashes increased over the years due to the potential economic impacts and level of injury severity. This study aims to analyze the injury severities of multivehicle large-trucks crashes on national highways. To capture and understand the complexities of contributing factors, two random parameter discrete outcome models – random parameter ordered probit and mixed logit – were estimated to predict the likelihood of five injury severity outcomes: fatal, incapacitating, non-incapacitating, possible injury, and no-injury. Estimation findings indicate that the level of injury severity is highly influenced by a number of complex interactions of factors, namely, human, vehicular, road-environmental, and crash dynamics that can vary across the observations.","PeriodicalId":405535,"journal":{"name":"Journal of the Transportation Research Forum","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Transportation Research Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5399/OSU/JTRF.54.1.4273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

A growing concern on large-truck crashes increased over the years due to the potential economic impacts and level of injury severity. This study aims to analyze the injury severities of multivehicle large-trucks crashes on national highways. To capture and understand the complexities of contributing factors, two random parameter discrete outcome models – random parameter ordered probit and mixed logit – were estimated to predict the likelihood of five injury severity outcomes: fatal, incapacitating, non-incapacitating, possible injury, and no-injury. Estimation findings indicate that the level of injury severity is highly influenced by a number of complex interactions of factors, namely, human, vehicular, road-environmental, and crash dynamics that can vary across the observations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大型卡车多车碰撞:随机参数离散结果建模方法
多年来,由于潜在的经济影响和伤害严重程度,对大型卡车碰撞的关注日益增加。本研究旨在分析国道上多车大型货车碰撞的伤害严重程度。为了捕捉和理解影响因素的复杂性,我们估计了两个随机参数离散结果模型——随机参数有序probit和混合logit——来预测五种损伤严重程度结果的可能性:致命、丧失行为能力、非丧失行为能力、可能伤害和无伤害。估计结果表明,损伤严重程度受到许多因素的复杂相互作用的高度影响,即人、车辆、道路环境和碰撞动力学,这些因素在观察过程中可能会有所不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Application of Decision Tree Models toExamine Motor Vehicle Crash Severity Outcomes Stochastic Modeling of the Last Mile Problem for Delivery Fleet Planning An Analysis of Illicit Drug Use and Motor Vehicle Fatalities Using Contiguous State-Level Data Pass the Salt: Markets for Grain Shipping on the Great Lakes Indian Vehicle Ownership: Insights from Literature Review, Expert Interviews, and State-Level Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1