A Validation Study of Two Wrist Worn Wearable Devices for Remote Assessment of Exercise Capacity

Alexandra Jamieson, M. Orini, N. Chaturvedi, Alun D. Hughes
{"title":"A Validation Study of Two Wrist Worn Wearable Devices for Remote Assessment of Exercise Capacity","authors":"Alexandra Jamieson, M. Orini, N. Chaturvedi, Alun D. Hughes","doi":"10.22489/CinC.2022.259","DOIUrl":null,"url":null,"abstract":"We determined wearable device errors in assessing a 6-Minute Walk Test (6MWT). 16 healthy adults (male 7(44%), mean $age\\pm SD \\ 27\\pm 4$ years) performed a standard (6MWT-S) and modified, free range’, (6MWT-FR) protocols with a Garmin and Fitbit smartwatch to measure three parameters: distance, step count and heart rate (HR). Distance during the 6MWT-FR was measured with smaller errors during 6MWT-S for both Garmin (Mean Absolute Percentage Error, $MAPE=9.8{\\%}$ [4.6%,12.6%] $vs \\quad 18.5\\%[13.0\\%,27.4\\%],p < 0.001)$ and Fitbit $(M A P E=9.4 \\%[4.5 \\%, 13.3 \\%] \\ {vs } \\ 22.7 \\%[18.3 \\%, 29.3 \\%],p < 0.001)$. Steps were measured with smaller errors with Garmin $(M A P E=2.3 \\%[1.1 \\%, 2.9 \\%]; r=0.96)$ than Fitbit (Fitbit: $MAPE=8.1\\%[5.0\\%,12.9\\%]; \\ r=0.24)$. Heart rate at rest, peak exercise and recovery was measured with median MAPE ranging between 1.2% and $2.9{\\%}$, with no evidence of difference between the two devices. Wearable measurements of the 6MWT provide insights about exercise capacity which could be monitored and evaluated remotely.","PeriodicalId":117840,"journal":{"name":"2022 Computing in Cardiology (CinC)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2022.259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We determined wearable device errors in assessing a 6-Minute Walk Test (6MWT). 16 healthy adults (male 7(44%), mean $age\pm SD \ 27\pm 4$ years) performed a standard (6MWT-S) and modified, free range’, (6MWT-FR) protocols with a Garmin and Fitbit smartwatch to measure three parameters: distance, step count and heart rate (HR). Distance during the 6MWT-FR was measured with smaller errors during 6MWT-S for both Garmin (Mean Absolute Percentage Error, $MAPE=9.8{\%}$ [4.6%,12.6%] $vs \quad 18.5\%[13.0\%,27.4\%],p < 0.001)$ and Fitbit $(M A P E=9.4 \%[4.5 \%, 13.3 \%] \ {vs } \ 22.7 \%[18.3 \%, 29.3 \%],p < 0.001)$. Steps were measured with smaller errors with Garmin $(M A P E=2.3 \%[1.1 \%, 2.9 \%]; r=0.96)$ than Fitbit (Fitbit: $MAPE=8.1\%[5.0\%,12.9\%]; \ r=0.24)$. Heart rate at rest, peak exercise and recovery was measured with median MAPE ranging between 1.2% and $2.9{\%}$, with no evidence of difference between the two devices. Wearable measurements of the 6MWT provide insights about exercise capacity which could be monitored and evaluated remotely.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
两种腕部可穿戴设备用于运动能力远程评估的验证研究
我们在评估6分钟步行测试(6MWT)时确定了可穿戴设备的误差。16名健康成年人(男性7人(44%),平均年龄27岁,4岁)使用Garmin和Fitbit智能手表进行标准(6MWT-S)和改良的自由放养(6MWT-FR)方案,测量三个参数:距离、步数和心率(HR)。Garmin(平均绝对百分比误差,$MAPE=9.8{\%}$ [4.6%,12.6%] $vs \quad 18.5\%[13.0\%,27.4\%],p < 0.001)$和Fitbit $(m.a p E=9.4 \%[4.5 \%, 13.3 \%] \{对\ 22.7 \%[18.3 \%,29.3 \%],p < 0.001)$在6MWT-S期间测量的距离误差较小。用Garmin $(M A P E=2.3 \%[1.1 \%, 2.9 \%])测量步数误差较小;r = 0.96)比美元Fitbit (Fitbit:日军= 8.1美元\ % (12.9 \ 5.0 \ %,%);美元\ r = 0.24)。在休息、运动高峰和恢复时的心率测量中位数MAPE在1.2%到2.9之间,没有证据表明两种设备之间存在差异。6MWT的可穿戴测量提供了关于运动能力的见解,可以远程监测和评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Nonlinear Dynamic Response of Intrapartum Fetal Heart Rate to Uterine Pressure Heart Pulse Demodulation from Emfit Mattress Sensor Using Spectral and Source Separation Techniques Automated Algorithm for QRS Detection in Cardiac Arrest Patients with PEA Extraction Algorithm for Morphologically Preserved Non-Invasive Multi-Channel Fetal ECG Improved Pulse Pressure Estimation Based on Imaging Photoplethysmographic Signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1