Ontology learning from Italian legal texts

Alessandro Lenci, S. Montemagni, Vito Pirrelli, Giulia Venturi
{"title":"Ontology learning from Italian legal texts","authors":"Alessandro Lenci, S. Montemagni, Vito Pirrelli, Giulia Venturi","doi":"10.3233/978-1-58603-942-4-75","DOIUrl":null,"url":null,"abstract":"The paper reports on the methodology and preliminary results of a case study in automatically extracting ontological knowledge from Italian legislative texts. We use a fully--implemented ontology learning system (T2K) that includes a battery of tools for Natural Language Processing (NLP), statistical text analysis and machine language learning. Tools are dynamically integrated to provide an incremental representation of the content of vast repositories of unstructured documents. Evaluated results, however preliminary, show the great potential of NLP--powered incremental systems like T2K for accurate large--scale semi--automatic extraction of legal ontologies.","PeriodicalId":186567,"journal":{"name":"Law, Ontologies and the Semantic Web","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Law, Ontologies and the Semantic Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/978-1-58603-942-4-75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

The paper reports on the methodology and preliminary results of a case study in automatically extracting ontological knowledge from Italian legislative texts. We use a fully--implemented ontology learning system (T2K) that includes a battery of tools for Natural Language Processing (NLP), statistical text analysis and machine language learning. Tools are dynamically integrated to provide an incremental representation of the content of vast repositories of unstructured documents. Evaluated results, however preliminary, show the great potential of NLP--powered incremental systems like T2K for accurate large--scale semi--automatic extraction of legal ontologies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
意大利法律文本的本体学习
本文报告了从意大利立法文本中自动提取本体论知识的方法和初步结果。我们使用了一个完全实现的本体学习系统(T2K),其中包括一系列用于自然语言处理(NLP)、统计文本分析和机器语言学习的工具。工具是动态集成的,以提供大量非结构化文档存储库内容的增量表示。评估结果,无论多么初步,都显示了像T2K这样的NLP驱动的增量系统在准确的大规模半自动提取法律本体方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The e-Sentencias Prototype: A Procedural Ontology for Legal Multimedia Applications in the Spanish Civil Courts Ontology learning from Italian legal texts An Ontology-Based Decision Support System for Judges Matching Law Ontologies using an Extended Argumentation Framework based on Confidence Degrees The Flood, the Channels and the Dykes: Managing Legal Information in a Globalized and Digital World
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1