Multispectral data classification with deep CNN for plastic bottle sorting

R. Maliks, R. Kadikis
{"title":"Multispectral data classification with deep CNN for plastic bottle sorting","authors":"R. Maliks, R. Kadikis","doi":"10.1109/ICMERR54363.2021.9680850","DOIUrl":null,"url":null,"abstract":"Current global trends and green policies indicate the importance of smart waste sorting. Polymer type identification plays a key role in the circular economy model, where high precision is vital to reduce the impurities of recycled plastic flakes. In this paper, we present a robust, high-accuracy plastic bottle polymer type classification using Convolutional Neural Network (CNN). Near-infrared (NIR) absorbance spectroscopy is used to gather polypropylene (PP), polyethene terephthalate (PET), high-density polyethene (HDPE), and low-density polyethene (LDPE) spectra in a dry and wet state. We propose a data augmentation method that generates additional training examples, and we experimentally determine the impact of the ratio of real and generated samples on the accuracy of the classification. In addition, we compare this classification approach with Support Vector Machine (SVM), Principal Component Analysis (PCA) and t-distributed Stochastic Neighbour Embedding (t-SNE) clas-sification methods and also provide data-preprocessing steps for these methods. Finally, we combine pre-processing, component analysis, and CNN to achieve 98.4% accuracy rate while reducing the sizes of CNN input feature vectors and the CNN model itself.","PeriodicalId":339998,"journal":{"name":"2021 6th International Conference on Mechanical Engineering and Robotics Research (ICMERR)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 6th International Conference on Mechanical Engineering and Robotics Research (ICMERR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMERR54363.2021.9680850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Current global trends and green policies indicate the importance of smart waste sorting. Polymer type identification plays a key role in the circular economy model, where high precision is vital to reduce the impurities of recycled plastic flakes. In this paper, we present a robust, high-accuracy plastic bottle polymer type classification using Convolutional Neural Network (CNN). Near-infrared (NIR) absorbance spectroscopy is used to gather polypropylene (PP), polyethene terephthalate (PET), high-density polyethene (HDPE), and low-density polyethene (LDPE) spectra in a dry and wet state. We propose a data augmentation method that generates additional training examples, and we experimentally determine the impact of the ratio of real and generated samples on the accuracy of the classification. In addition, we compare this classification approach with Support Vector Machine (SVM), Principal Component Analysis (PCA) and t-distributed Stochastic Neighbour Embedding (t-SNE) clas-sification methods and also provide data-preprocessing steps for these methods. Finally, we combine pre-processing, component analysis, and CNN to achieve 98.4% accuracy rate while reducing the sizes of CNN input feature vectors and the CNN model itself.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度CNN的多光谱数据分类用于塑料瓶分类
当前的全球趋势和绿色政策表明了智能垃圾分类的重要性。聚合物类型识别在循环经济模型中起着关键作用,其中高精度对于减少再生塑料薄片的杂质至关重要。在本文中,我们提出了一种基于卷积神经网络(CNN)的鲁棒、高精度塑料瓶聚合物类型分类方法。近红外(NIR)吸收光谱用于收集干、湿状态下的聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、高密度聚乙烯(HDPE)和低密度聚乙烯(LDPE)光谱。我们提出了一种生成额外训练样本的数据增强方法,并通过实验确定了真实样本和生成样本的比例对分类精度的影响。此外,我们将这种分类方法与支持向量机(SVM)、主成分分析(PCA)和t分布随机邻居嵌入(t-SNE)分类方法进行了比较,并提供了这些方法的数据预处理步骤。最后,我们将预处理、分量分析和CNN结合起来,在减小CNN输入特征向量和CNN模型本身尺寸的同时,达到了98.4%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling and Simulation of Automatic Emergency Braking Control System for Unmanned All-Terrain Vehicle Robot-Guided Lightweight Engineering Fixtures: Process Lightweight Engineering for More Flexible, Resource-Saving and Energy-Efficient Production Analysis of Stress on Boom Excavator V EC650BE Using Finite Element Method Graph-based Motion Planning with Primitives in a Continuous State Space Search Dynamic Power Management on a Mobile Robot
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1