Social Network Analysis of Popular YouTube Videos via Vertical Quantitative Mining

Adam G. M. Pazdor, C. Leung, Thomas J. Czubryt, Junyi Lu, Denys Popov, Sanskar Raval
{"title":"Social Network Analysis of Popular YouTube Videos via Vertical Quantitative Mining","authors":"Adam G. M. Pazdor, C. Leung, Thomas J. Czubryt, Junyi Lu, Denys Popov, Sanskar Raval","doi":"10.1109/ASONAM55673.2022.10068640","DOIUrl":null,"url":null,"abstract":"Frequent itemset (or frequent pattern) mining is a technique used in big data mining to discover frequently occurring sets of items (such as popular co-purchased merchandise) and has numerous applications in the field of databases. Traditional frequent pattern mining algorithms only look at Boolean mining; that is, considering only the presence or absence of an item in an itemset. In this paper, we present an algorithm for mining interesting quantitative frequent patterns. Our qEclat (or Q-Eclat) algorithm extends the common Eclat algorithm to be able to vertically mine quantitative patterns. When compared with the existing MQA-M algorithm (which was built for quantitative horizontal frequent pattern mining), our evaluation results show that qEclat mines quantitative frequent patterns faster.","PeriodicalId":423113,"journal":{"name":"2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"45 9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASONAM55673.2022.10068640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Frequent itemset (or frequent pattern) mining is a technique used in big data mining to discover frequently occurring sets of items (such as popular co-purchased merchandise) and has numerous applications in the field of databases. Traditional frequent pattern mining algorithms only look at Boolean mining; that is, considering only the presence or absence of an item in an itemset. In this paper, we present an algorithm for mining interesting quantitative frequent patterns. Our qEclat (or Q-Eclat) algorithm extends the common Eclat algorithm to be able to vertically mine quantitative patterns. When compared with the existing MQA-M algorithm (which was built for quantitative horizontal frequent pattern mining), our evaluation results show that qEclat mines quantitative frequent patterns faster.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于垂直定量挖掘的YouTube热门视频社交网络分析
频繁项目集(或频繁模式)挖掘是一种用于大数据挖掘的技术,用于发现频繁出现的项目集(如流行的共同购买的商品),在数据库领域有许多应用。传统的频繁模式挖掘算法只关注布尔挖掘;也就是说,只考虑一个项目集中是否存在一个项目。本文提出了一种挖掘有趣的定量频繁模式的算法。我们的qEclat(或Q-Eclat)算法扩展了通用的Eclat算法,能够垂直挖掘定量模式。与现有的MQA-M算法(为定量水平频繁模式挖掘而构建)相比,我们的评估结果表明,qEclat可以更快地挖掘定量频繁模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MOGPlay: A Decentralized Crowd Journalism Application for Democratic News Production The Pursuit of Being Heard: An Unsupervised Approach to Narrative Detection in Online Protest ASONAM 2022 Tutorial I: Mining and Analysing Collaboration in git Repositories with git2net Multigraph transformation for community detection applied to financial services Whole-File Chunk-Based Deduplication Using Reinforcement Learning for Cloud Storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1