Fault-Tolerant Electrical Machines for Transport Applications

F. Ismagilov, C. Gerada, M. Degano, Oscar Gurevich, Anatoliy I. Guliyenko, V. Vavilov, D. Gusakov
{"title":"Fault-Tolerant Electrical Machines for Transport Applications","authors":"F. Ismagilov, C. Gerada, M. Degano, Oscar Gurevich, Anatoliy I. Guliyenko, V. Vavilov, D. Gusakov","doi":"10.1109/ICOECS46375.2019.8949914","DOIUrl":null,"url":null,"abstract":"This paper provides an overview of-fault-tolerant electric machine for transport applications. A number of motor failure cases and methods to prevent or minimize their impact on the drive system are considered. The fault tolerance of bearings, stator and rotor windings are both analysed in detail. In addition, finite element simulations of an outer rotor permanent magnet machine with a power of 4.5 kW and rated speed of 12000 rpm have been carried out. To verify the simulation results, an experimental prototype of a 6-phase permanent magnet motor for aircraft fuel pump application was developed. It is shown that the use of 6-phase (and more phases) electrical machines with permanent magnets is more effective than machines with duplex three phase system in terms of fault tolerance and efficiency. In addition, it is shown that the use of bearingless machines with permanent magnets is one of the most promising technologies for providing of fault-tolerance.","PeriodicalId":371743,"journal":{"name":"2019 International Conference on Electrotechnical Complexes and Systems (ICOECS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Electrotechnical Complexes and Systems (ICOECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOECS46375.2019.8949914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper provides an overview of-fault-tolerant electric machine for transport applications. A number of motor failure cases and methods to prevent or minimize their impact on the drive system are considered. The fault tolerance of bearings, stator and rotor windings are both analysed in detail. In addition, finite element simulations of an outer rotor permanent magnet machine with a power of 4.5 kW and rated speed of 12000 rpm have been carried out. To verify the simulation results, an experimental prototype of a 6-phase permanent magnet motor for aircraft fuel pump application was developed. It is shown that the use of 6-phase (and more phases) electrical machines with permanent magnets is more effective than machines with duplex three phase system in terms of fault tolerance and efficiency. In addition, it is shown that the use of bearingless machines with permanent magnets is one of the most promising technologies for providing of fault-tolerance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
运输用容错电机
本文介绍了运输用容错电机的研究概况。考虑了一些电机故障的情况和方法,以防止或尽量减少其对驱动系统的影响。详细分析了轴承、定子和转子绕组的容错性。此外,对功率为4.5 kW、额定转速为12000 rpm的外转子永磁电机进行了有限元仿真。为了验证仿真结果,研制了用于飞机燃油泵的6相永磁电机实验样机。结果表明,在容错性和效率方面,采用六相(或更多相)永磁电机比采用双相三相系统的电机更有效。此外,研究还表明,使用永磁体的无轴承机器是提供容错的最有前途的技术之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research of the characteristics of bridge sensory modules based on the AMR effect Synchronous Frequency Calculation Based on Synchrophasor Measurements Transformer with a Hybrid Magnetic Core for High-Efficiency Aircraft Transformer-Rectifier Unit Analysis of the Power Consumption of the Booster Pump Station Using Simulation Models of Fluid Control Engineering Calculation of Inductor Parameters for Gas Pipelines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1