Symmetric neural networks and its examples

Hee-Seung Na, Youngjin Park
{"title":"Symmetric neural networks and its examples","authors":"Hee-Seung Na, Youngjin Park","doi":"10.1109/IJCNN.1992.287176","DOIUrl":null,"url":null,"abstract":"The concept of a symmetric neural network, which is not only structurally symmetric but also has symmetric weight distribution, is presented. The concept is further expanded to constrained networks, which may also be applied to some nonsymmetric problems in which there is some prior knowledge of the weight distribution pattern. Because these neural networks cannot be trained by the conventional training algorithm, which destroys the weight structure of the neural networks, a proper training algorithm is suggested. Three examples are shown to demonstrate the applicability of the proposed ideas. Use of the proposed concepts results in improved system performance, reduced network dimension, less computational load, and improved learning for the examples considered.<<ETX>>","PeriodicalId":286849,"journal":{"name":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1992.287176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The concept of a symmetric neural network, which is not only structurally symmetric but also has symmetric weight distribution, is presented. The concept is further expanded to constrained networks, which may also be applied to some nonsymmetric problems in which there is some prior knowledge of the weight distribution pattern. Because these neural networks cannot be trained by the conventional training algorithm, which destroys the weight structure of the neural networks, a proper training algorithm is suggested. Three examples are shown to demonstrate the applicability of the proposed ideas. Use of the proposed concepts results in improved system performance, reduced network dimension, less computational load, and improved learning for the examples considered.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对称神经网络及其实例
提出了对称神经网络的概念,它不仅在结构上是对称的,而且在权重分布上也是对称的。该概念进一步扩展到约束网络,也可以应用于一些存在权重分布模式先验知识的非对称问题。由于传统的训练算法无法训练这些神经网络,破坏了神经网络的权值结构,因此提出了一种合适的训练算法。通过三个例子来证明所提出思想的适用性。使用所提出的概念可以提高系统性能,降低网络维度,减少计算负载,并改善所考虑示例的学习
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonlinear system identification using diagonal recurrent neural networks Why error measures are sub-optimal for training neural network pattern classifiers Fuzzy clustering using fuzzy competitive learning networks Design and development of a real-time neural processor using the Intel 80170NX ETANN Precision analysis of stochastic pulse encoding algorithms for neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1