Introducing Transfer Learning Framework on Device Modeling by Machine Learning

Kota Niiyama, Hiromitu Awano, Takashi Sato
{"title":"Introducing Transfer Learning Framework on Device Modeling by Machine Learning","authors":"Kota Niiyama, Hiromitu Awano, Takashi Sato","doi":"10.1109/ICMTS55420.2023.10094067","DOIUrl":null,"url":null,"abstract":"In this study, we propose a novel transistor modeling method using machine learning techniques, with a focus on extrapolation performance. Our method leverages knowledge from a base model that is related to the target model, instead of relying solely on device-specific information. The results show that our approach outperforms other transistor modeling methods based on machine learning, particularly in modeling similar but different transistors that belong to the same device family. Our method was able to reduce the root mean squared error (RMSE) by up to 80.0% compared to other methods.","PeriodicalId":275144,"journal":{"name":"2023 35th International Conference on Microelectronic Test Structure (ICMTS)","volume":"279 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 35th International Conference on Microelectronic Test Structure (ICMTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMTS55420.2023.10094067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we propose a novel transistor modeling method using machine learning techniques, with a focus on extrapolation performance. Our method leverages knowledge from a base model that is related to the target model, instead of relying solely on device-specific information. The results show that our approach outperforms other transistor modeling methods based on machine learning, particularly in modeling similar but different transistors that belong to the same device family. Our method was able to reduce the root mean squared error (RMSE) by up to 80.0% compared to other methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的设备建模迁移学习框架介绍
在这项研究中,我们提出了一种使用机器学习技术的新型晶体管建模方法,重点关注外推性能。我们的方法利用了与目标模型相关的基础模型的知识,而不是仅仅依赖于特定于设备的信息。结果表明,我们的方法优于其他基于机器学习的晶体管建模方法,特别是在建模属于同一器件家族的相似但不同的晶体管方面。与其他方法相比,我们的方法能够将均方根误差(RMSE)降低高达80.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Test Circuit Design for Accurately Characterizing Cells’ Output Currents in a Read-Decoupled 8T SRAM Array for Computing-in-Memory Applications An Extended Method to Analyze Boron Diffusion Defects in 16 nm Node High-Voltage FinFETs Measurement of Temperature Effect on Comparator Offset Voltage Variation Bridging Large-Signal and Small-Signal Responses of Hafnium-Based Ferroelectric Tunnel Junctions A multi-contact six-terminal cross-bridge Kelvin resistor (CBKR) structure for evaluation of interface uniformity of the Ti-Al alloy/p-type 4H-SiC contact
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1