{"title":"Spatially constrained fuzzy hyper-prototype clustering with application to brain tissue segmentation","authors":"Jin Liu, T. Pham, W. Wen, P. Sachdev","doi":"10.1109/BIBM.2010.5706598","DOIUrl":null,"url":null,"abstract":"Motivated by fuzzy clustering incorporating spatial information, we present a spatially constrained fuzzy hyper-prototype clustering algorithm in this paper. This approach uses hyperplanes as cluster centers and adds a spatial regularizer into the fuzzy objective function. Formulation of the new fuzzy objective function is presented; and its iterative numerical solution, which minimizes the objective function, derived. We applied the proposed algorithm for the segmentation of brain MRI data. Experimental results have demonstrated that the proposed clustering method outperforms other fuzzy clustering models.","PeriodicalId":275098,"journal":{"name":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2010.5706598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Motivated by fuzzy clustering incorporating spatial information, we present a spatially constrained fuzzy hyper-prototype clustering algorithm in this paper. This approach uses hyperplanes as cluster centers and adds a spatial regularizer into the fuzzy objective function. Formulation of the new fuzzy objective function is presented; and its iterative numerical solution, which minimizes the objective function, derived. We applied the proposed algorithm for the segmentation of brain MRI data. Experimental results have demonstrated that the proposed clustering method outperforms other fuzzy clustering models.