Spatially constrained fuzzy hyper-prototype clustering with application to brain tissue segmentation

Jin Liu, T. Pham, W. Wen, P. Sachdev
{"title":"Spatially constrained fuzzy hyper-prototype clustering with application to brain tissue segmentation","authors":"Jin Liu, T. Pham, W. Wen, P. Sachdev","doi":"10.1109/BIBM.2010.5706598","DOIUrl":null,"url":null,"abstract":"Motivated by fuzzy clustering incorporating spatial information, we present a spatially constrained fuzzy hyper-prototype clustering algorithm in this paper. This approach uses hyperplanes as cluster centers and adds a spatial regularizer into the fuzzy objective function. Formulation of the new fuzzy objective function is presented; and its iterative numerical solution, which minimizes the objective function, derived. We applied the proposed algorithm for the segmentation of brain MRI data. Experimental results have demonstrated that the proposed clustering method outperforms other fuzzy clustering models.","PeriodicalId":275098,"journal":{"name":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2010.5706598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Motivated by fuzzy clustering incorporating spatial information, we present a spatially constrained fuzzy hyper-prototype clustering algorithm in this paper. This approach uses hyperplanes as cluster centers and adds a spatial regularizer into the fuzzy objective function. Formulation of the new fuzzy objective function is presented; and its iterative numerical solution, which minimizes the objective function, derived. We applied the proposed algorithm for the segmentation of brain MRI data. Experimental results have demonstrated that the proposed clustering method outperforms other fuzzy clustering models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
空间约束模糊超原型聚类在脑组织分割中的应用
基于空间信息的模糊聚类,提出了一种空间约束的模糊超原型聚类算法。该方法采用超平面作为聚类中心,并在模糊目标函数中加入空间正则化器。给出了新的模糊目标函数的表达式;并推导出目标函数极小化的迭代数值解。我们将该算法应用于脑MRI数据的分割。实验结果表明,本文提出的聚类方法优于其他模糊聚类模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A gene ranking method using text-mining for the identification of disease related genes alns — A searchable and filterable sequence alignment format A fast and noise-adaptive rough-fuzzy hybrid algorithm for medical image segmentation An accurate, automatic method for markerless alignment of electron tomographic images Unsupervised integration of multiple protein disorder predictors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1