A new charger system approach: The current and voltage control loops

K. Omar, N. Soin, W. Mahadi, Hassan Malik
{"title":"A new charger system approach: The current and voltage control loops","authors":"K. Omar, N. Soin, W. Mahadi, Hassan Malik","doi":"10.1109/SMELEC.2010.5549350","DOIUrl":null,"url":null,"abstract":"This paper presents a lithium-ion battery recharging circuit with an improved charger system topology for portable devices and handheld gadgets. The proposed charger topology uses an operational amplifier with NMOS input for a smooth transition between current control loop and voltage control loop and to control a power pass element device. Using the above-mentioned abilities, a complete charging process, consisting of three sub-processes; automatically trickle charge, constant current and constant voltage mode are implemented. In the proposed new charger system topology, the charging behaviors of the Li-ion battery can achieve a better charging performance and terminated automatically when fully charged. Simulation results show that the power pass element channel width is 40,000 µm which is less 60% from others design, is able to carry out the output voltage of 4.2 V, the maximum charging current reaches 1 A and the trickle charge is 10% of constant current. The new charger topology has been implemented using 0.18µm CMOS process. Experimental result shows that the new charger design topology agrees with the charging behaviors from simulation results.","PeriodicalId":308501,"journal":{"name":"2010 IEEE International Conference on Semiconductor Electronics (ICSE2010)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Semiconductor Electronics (ICSE2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMELEC.2010.5549350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a lithium-ion battery recharging circuit with an improved charger system topology for portable devices and handheld gadgets. The proposed charger topology uses an operational amplifier with NMOS input for a smooth transition between current control loop and voltage control loop and to control a power pass element device. Using the above-mentioned abilities, a complete charging process, consisting of three sub-processes; automatically trickle charge, constant current and constant voltage mode are implemented. In the proposed new charger system topology, the charging behaviors of the Li-ion battery can achieve a better charging performance and terminated automatically when fully charged. Simulation results show that the power pass element channel width is 40,000 µm which is less 60% from others design, is able to carry out the output voltage of 4.2 V, the maximum charging current reaches 1 A and the trickle charge is 10% of constant current. The new charger topology has been implemented using 0.18µm CMOS process. Experimental result shows that the new charger design topology agrees with the charging behaviors from simulation results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的充电系统方法:电流和电压控制回路
提出了一种基于改进充电器系统拓扑结构的锂离子电池充电电路,适用于便携式设备和手持设备。所提出的充电器拓扑结构使用具有NMOS输入的运算放大器来实现电流控制回路和电压控制回路之间的平滑过渡,并控制电源通过元件器件。利用上述能力,一个完整的充电过程,由三个子过程组成;自动涓流充电,恒流恒压模式实现。在提出的新型充电器系统拓扑中,锂离子电池的充电行为可以获得更好的充电性能,并且在充满电时自动终止。仿真结果表明,功率通元件通道宽度为40000µm,比其他设计减小了60%,能够实现4.2 V的输出电压,最大充电电流达到1 A,涓流充电为恒流的10%。新的充电器拓扑结构采用0.18µm CMOS工艺实现。实验结果表明,新设计的充电器拓扑结构与仿真结果吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The sensing performance of hydrogen gas sensor utilizing undoped-AlGaN/GaN HEMT Optimum design of SU-8 based accelerometer with reduced cross axis sensitivity A 5-GHZ VCO for WLAN applications Effect of Mn doping on the structural and optical properties of ZnO films Ubiquitous sensor technologies: The way moving forward
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1