e-G2C: A 0.14-to-8.31 µJ/Inference NN-based Processor with Continuous On-chip Adaptation for Anomaly Detection and ECG Conversion from EGM

Yang Zhao, Yongan Zhang, Yonggan Fu, Xuefeng Ouyang, Cheng Wan, Shang Wu, Anton Banta, M. John, A. Post, M. Razavi, Joseph R. Cavallaro, B. Aazhang, Yingyan Lin
{"title":"e-G2C: A 0.14-to-8.31 µJ/Inference NN-based Processor with Continuous On-chip Adaptation for Anomaly Detection and ECG Conversion from EGM","authors":"Yang Zhao, Yongan Zhang, Yonggan Fu, Xuefeng Ouyang, Cheng Wan, Shang Wu, Anton Banta, M. John, A. Post, M. Razavi, Joseph R. Cavallaro, B. Aazhang, Yingyan Lin","doi":"10.1109/VLSITechnologyandCir46769.2022.9830335","DOIUrl":null,"url":null,"abstract":"This work presents the first silicon-validated dedicated EGM-to-ECG (G2C) processor, dubbed e-G2C, featuring continuous lightweight anomaly detection, event-driven coarse/precise conversion, and on-chip adaptation. e-G2C utilizes neural network (NN) based G2C conversion and integrates 1) an architecture supporting anomaly detection and coarse/precise conversion via time multiplexing to balance the effectiveness and power, 2) an algorithm-hardware co-designed vector-wise sparsity resulting in a 1.6-1.7× speedup, 3) hybrid dataflows for enhancing near 100% utilization for normal/depth-wise(DW)/point-wise(PW) convolutions (Convs), and 4) an on-chip detection threshold adaptation engine for continuous effectiveness. The achieved 0.14-8.31 µJ/inference energy efficiency outperforms prior arts under similar complexity, promising real-time detection/conversion and possibly life-critical interventions.","PeriodicalId":332454,"journal":{"name":"2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSITechnologyandCir46769.2022.9830335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This work presents the first silicon-validated dedicated EGM-to-ECG (G2C) processor, dubbed e-G2C, featuring continuous lightweight anomaly detection, event-driven coarse/precise conversion, and on-chip adaptation. e-G2C utilizes neural network (NN) based G2C conversion and integrates 1) an architecture supporting anomaly detection and coarse/precise conversion via time multiplexing to balance the effectiveness and power, 2) an algorithm-hardware co-designed vector-wise sparsity resulting in a 1.6-1.7× speedup, 3) hybrid dataflows for enhancing near 100% utilization for normal/depth-wise(DW)/point-wise(PW) convolutions (Convs), and 4) an on-chip detection threshold adaptation engine for continuous effectiveness. The achieved 0.14-8.31 µJ/inference energy efficiency outperforms prior arts under similar complexity, promising real-time detection/conversion and possibly life-critical interventions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
e-G2C:一种0.14- 8.31µJ/Inference基于神经网络的连续片上自适应处理器,用于异常检测和ECG转换
这项工作提出了第一个经过硅验证的专用egm到ecg (G2C)处理器,称为e-G2C,具有连续轻量级异常检测,事件驱动的粗/精确转换和片上适应功能。e-G2C利用基于神经网络(NN)的G2C转换,并集成了1)支持异常检测和通过时间复用进行粗/精确转换的架构,以平衡效率和功率;2)算法-硬件协同设计的矢量稀疏性,从而实现1.6-1.7倍的加速;3)混合数据流,可将正常/深度/点卷积(Convs)的利用率提高近100%。4)片上检测阈值自适应引擎,实现持续有效性。所实现的0.14-8.31 μ J/推理能量效率在类似复杂性下优于现有技术,有望实现实时检测/转换,并可能实现生命关键干预。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A 12-bit 8GS/s RF Sampling DAC with Code-Dependent Nonlinearity Compensation and Intersegmental Current-Mismatch Calibration in 5nm FinFET Scalable 1.4 μW cryo-CMOS SP4T multiplexer operating at 10 mK for high-fidelity superconducting qubit measurements A 507 GMACs/J 256-Core Domain Adaptive Systolic-Array-Processor for Wireless Communication and Linear-Algebra Kernels in 12nm FINFET An 81.6dB SNDR 15.625MHz BW 3rd Order CT SDM with a True TI NS Quantizer Energy-Efficient High Bandwidth 6T SRAM Design on Intel 4 CMOS Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1