Generate earthquake catalog using the VAE method

Zhangyu Wang, J. Zhang
{"title":"Generate earthquake catalog using the VAE method","authors":"Zhangyu Wang, J. Zhang","doi":"10.1145/3590003.3590052","DOIUrl":null,"url":null,"abstract":"The earthquake catalog is essential for seismic activity analysis and earthquake forecasting. Researchers would like to use a complete catalog for further study. In this study, we use a machine learning method to derive a double-variable model to learn the latent rules of catalogs and generate the synthetic ones from a historical catalog. In the first step, we obtain an individual cluster from the catalog by the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm. Then we take the envelope of the magnitude-time curve of the clusters. In the end, we apply the Variational AutoEncoder (VAE) method to learn the inherent feature and produce the latent magnitude-time curves. We use the earthquakes in Southern California from 2016 January 1 to 2022 December 18 to train the VAE model. After training, the model can generate abundant magnitude-time curves and the result shows that the magnitude-time curves during this period can be divided into single-peak, double-peak, and treble-peak patterns. Furthermore, we can use this method to generate more clusters for swarm identification and analysis of regional seismic activity.","PeriodicalId":340225,"journal":{"name":"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3590003.3590052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The earthquake catalog is essential for seismic activity analysis and earthquake forecasting. Researchers would like to use a complete catalog for further study. In this study, we use a machine learning method to derive a double-variable model to learn the latent rules of catalogs and generate the synthetic ones from a historical catalog. In the first step, we obtain an individual cluster from the catalog by the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm. Then we take the envelope of the magnitude-time curve of the clusters. In the end, we apply the Variational AutoEncoder (VAE) method to learn the inherent feature and produce the latent magnitude-time curves. We use the earthquakes in Southern California from 2016 January 1 to 2022 December 18 to train the VAE model. After training, the model can generate abundant magnitude-time curves and the result shows that the magnitude-time curves during this period can be divided into single-peak, double-peak, and treble-peak patterns. Furthermore, we can use this method to generate more clusters for swarm identification and analysis of regional seismic activity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用VAE方法生成地震目录
地震目录是地震活动分析和地震预报的基础。研究人员希望使用完整的目录进行进一步的研究。在本研究中,我们使用机器学习的方法来推导双变量模型来学习目录的潜在规则,并从历史目录中生成合成规则。在第一步中,我们通过基于密度的带噪声应用空间聚类(DBSCAN)算法从目录中获得单个聚类。然后我们取星团的星等-时间曲线的包络线。最后,应用变分自编码器(VAE)方法学习其固有特征,生成潜在的幅度-时间曲线。我们使用2016年1月1日至2022年12月18日的南加州地震来训练VAE模型。经过训练,该模型可以生成丰富的震级-时间曲线,结果表明,这段时间的震级-时间曲线可以分为单峰、双峰和三峰模式。此外,还可以利用该方法生成更多的聚类,用于区域地震活动的群识别和分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Interpretable Brain Network Atlas-Based Hybrid Model for Mild Cognitive Impairment Progression Prediction Heart Sound Classification Algorithm Based on Sub-band Statistics and Time-frequency Fusion Features An Unmanned Lane Detection Algorithm Using Deep Learning and Ordered Test Sets Strategy Federated Learning-Based Intrusion Detection Method for Smart Grid A U-Net based Self-Supervised Image Generation Model Applying PCA using Small Datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1