Stochastic single flux quantum neuromorphic computing using magnetically tunable Josephson junctions

S. Russek, C. Donnelly, M. Schneider, B. Baek, M. Pufall, W. Rippard, P. Hopkins, P. Dresselhaus, S. Benz
{"title":"Stochastic single flux quantum neuromorphic computing using magnetically tunable Josephson junctions","authors":"S. Russek, C. Donnelly, M. Schneider, B. Baek, M. Pufall, W. Rippard, P. Hopkins, P. Dresselhaus, S. Benz","doi":"10.1109/ICRC.2016.7738712","DOIUrl":null,"url":null,"abstract":"Single flux quantum (SFQ) circuits form a natural neuromorphic technology with SFQ pulses and superconducting transmission lines simulating action potentials and axons, respectively. Here we present a new component, magnetic Josephson junctions, that have a tunablility and re-configurability that was lacking from previous SFQ neuromorphic circuits. The nanoscale magnetic structure acts as a tunable synaptic constituent that modifies the junction critical current. These circuits can operate near the thermal limit where stochastic firing of the neurons is an essential component of the technology. This technology has the ability to create complex neural systems with greater than 1021 neural firings per second with approximately 1 W dissipation.","PeriodicalId":387008,"journal":{"name":"2016 IEEE International Conference on Rebooting Computing (ICRC)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Rebooting Computing (ICRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRC.2016.7738712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Single flux quantum (SFQ) circuits form a natural neuromorphic technology with SFQ pulses and superconducting transmission lines simulating action potentials and axons, respectively. Here we present a new component, magnetic Josephson junctions, that have a tunablility and re-configurability that was lacking from previous SFQ neuromorphic circuits. The nanoscale magnetic structure acts as a tunable synaptic constituent that modifies the junction critical current. These circuits can operate near the thermal limit where stochastic firing of the neurons is an essential component of the technology. This technology has the ability to create complex neural systems with greater than 1021 neural firings per second with approximately 1 W dissipation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机单通量量子神经形态计算利用磁可调谐约瑟夫森结
单通量量子电路(SFQ)形成了一种天然的神经形态技术,SFQ脉冲和超导传输线分别模拟动作电位和轴突。在这里,我们提出了一种新的组件,磁性约瑟夫森结,具有可调性和可重构性,这是以前的SFQ神经形态电路所缺乏的。纳米级的磁性结构作为可调谐的突触成分,可以改变结的临界电流。这些电路可以在接近热极限的情况下工作,在这种情况下,神经元的随机放电是该技术的重要组成部分。该技术能够创建每秒超过1021次神经发射的复杂神经系统,耗散约为1w。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
Using Digitised X-Ray Powder Diffraction Scans as Input for a New Pc-At Search/Match Program
IF 0 Advances in x-ray analysisPub Date : 1987-01-01 DOI: 10.1154/S0376030800022254
P. Caussin, J. Nusinovici, D. W. Beard
New possibilities for neutron EDM search using diffraction by crystal without a centre of symmetry
IF 2.8 3区 物理与天体物理Physica B-condensed MatterPub Date : 1997-06-02 DOI: 10.1016/S0921-4526(96)00859-9
V.V. Fedorov, V.V. Voronin, E.G. Lapin, O.I. Sumbaev
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Designing reconfigurable large-scale deep learning systems using stochastic computing Bayesian sensor fusion with fast and low power stochastic circuits Technology considerations for neuromorphic computing A functional architecture for scalable quantum computing Optical implementation of probabilistic graphical models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1