{"title":"Accelerating Video Analytics","authors":"Joy Arulraj","doi":"10.1145/3516431.3516442","DOIUrl":null,"url":null,"abstract":"MOTIVATION. The advent of inexpensive, high-quality cameras has led to a rapid increase in the volume of generated video data [19, 16]. It is now feasible to automatically analyze these video datasets at scale due to two developments over the last decade. First, researchers have designed complex, computationally-intensive deep learning (DL) models that capture the contents of a given set of video frames (e.g., objects present in a particular frame [11]) [15]. Second, the computational capabilities of hardware accelerators for evaluating these DL models have increased over the last decade (e.g., TPUs) [8]. We anticipate that automated analysis of videos will reduce the labor cost of analyzing video","PeriodicalId":346332,"journal":{"name":"ACM SIGMOD Record","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGMOD Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3516431.3516442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
MOTIVATION. The advent of inexpensive, high-quality cameras has led to a rapid increase in the volume of generated video data [19, 16]. It is now feasible to automatically analyze these video datasets at scale due to two developments over the last decade. First, researchers have designed complex, computationally-intensive deep learning (DL) models that capture the contents of a given set of video frames (e.g., objects present in a particular frame [11]) [15]. Second, the computational capabilities of hardware accelerators for evaluating these DL models have increased over the last decade (e.g., TPUs) [8]. We anticipate that automated analysis of videos will reduce the labor cost of analyzing video