SSTCU:A Spatial-Temporal Correlation Unit based Traffic Flow Prediction Approach

Yao Liu, Xiyu Chen, Zhongfu Jin, Yujie Zhang, Jiandang Yang
{"title":"SSTCU:A Spatial-Temporal Correlation Unit based Traffic Flow Prediction Approach","authors":"Yao Liu, Xiyu Chen, Zhongfu Jin, Yujie Zhang, Jiandang Yang","doi":"10.1109/UV56588.2022.10185475","DOIUrl":null,"url":null,"abstract":"Traffic flow prediction is a crucial application in traffic guidance and control. Existing approaches rarely consider the dynamically correlated spatial-temporal features between multiple road segments. To effectively capture the spatial-temporal features between multiple road segments, we propose a novel approach, Spatial-Temporal Correlation Unit (STCU). STCU utilizes a fast Fourier transform-based autocorrelation mechanism to extract the correlations between temporal sequences, a graph attention mechanism to extract the correlations between spatial traffic monitors, and a feedforward neural network to fuse the interacting spatial-temporal correlations. We construct a traffic flow prediction model with a stacked STCU module called Sequential STCU (SSTCU). We conduct a lot of experiments and compared them with the several baselines to verify the effectiveness of SSTCU. The results show that the proposed method outperforms the baselines and achieves state-of-the-art performance. We also conduct ablation experiments to verify the effectiveness of the STCU module. Moreover, we change the layer depth of the model to find the most efficient setting for a computation efficiency consideration.","PeriodicalId":211011,"journal":{"name":"2022 6th International Conference on Universal Village (UV)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Universal Village (UV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UV56588.2022.10185475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traffic flow prediction is a crucial application in traffic guidance and control. Existing approaches rarely consider the dynamically correlated spatial-temporal features between multiple road segments. To effectively capture the spatial-temporal features between multiple road segments, we propose a novel approach, Spatial-Temporal Correlation Unit (STCU). STCU utilizes a fast Fourier transform-based autocorrelation mechanism to extract the correlations between temporal sequences, a graph attention mechanism to extract the correlations between spatial traffic monitors, and a feedforward neural network to fuse the interacting spatial-temporal correlations. We construct a traffic flow prediction model with a stacked STCU module called Sequential STCU (SSTCU). We conduct a lot of experiments and compared them with the several baselines to verify the effectiveness of SSTCU. The results show that the proposed method outperforms the baselines and achieves state-of-the-art performance. We also conduct ablation experiments to verify the effectiveness of the STCU module. Moreover, we change the layer depth of the model to find the most efficient setting for a computation efficiency consideration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于时空相关单元的交通流预测方法
交通流预测是交通引导与控制的重要应用。现有方法很少考虑多路段之间动态相关的时空特征。为了有效地捕捉多个路段之间的时空特征,我们提出了一种新的方法——时空相关单元(STCU)。STCU利用基于傅立叶变换的快速自相关机制提取时间序列之间的相关性,利用图注意机制提取空间交通监视器之间的相关性,并利用前馈神经网络融合相互作用的时空相关性。我们用一个堆叠的STCU模块构建了一个交通流预测模型,称为顺序STCU (Sequential STCU, SSTCU)。为了验证SSTCU的有效性,我们进行了大量的实验,并与几个基线进行了比较。结果表明,所提出的方法优于基线,达到了最先进的性能。我们还进行了烧蚀实验来验证STCU模块的有效性。此外,我们改变了模型的层深度,以找到最有效的设置,以考虑计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generative Cooperative Network for Person Image Generation Image Caption Enhancement with GRIT, Portable ResNet and BART Context-Tuning Dynamical Simulation Study of Hybrid Solar-Fossil Fuel Thermochemical Storage and Electricity, Heat and Cold Generation System Bag of Tricks for “Vision Meet Alage” Object Detection Challenge Density Functional Theory Study of Adding Ionic Liquid to Aqueous Ammonia System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1