{"title":"A Ka-band High Gain Wideband Low Noise Amplifier in $.18-\\mu \\mathrm{m}\\ \\text{SiGe}$ BiCMOS","authors":"Zhan Chen, Chun-Xia Zhou, Guoxiao Cheng, Jiankang Li, Wen Wu","doi":"10.1109/IWS55252.2022.9977672","DOIUrl":null,"url":null,"abstract":"This paper presents a design approach for Ka-band low noise amplifier (LNA) with both high gain and wide bandwidth. With a five-stage cascode structure, emitter degeneration is used in the first stage to implement the simultaneous power and noise matching and positive-feedback network is adopted to enhance the gain in the next four stages. By using stagger tuning technique, wide bandwidth can be achieved. For demonstration, a Ka-band LNA is designed and fabricated in a 0.18 $\\boldsymbol{\\mu}\\mathbf{m}\\ \\mathbf{SiGe}$ BiCMOS process. It achieves a 3-dB bandwidth from 31.6 GHz to 38.2 GHz with a maximum gain of 42.9 dB. The circuit operates from a 2.5 V supply with a DC power consumption of 60 mW.","PeriodicalId":126964,"journal":{"name":"2022 IEEE MTT-S International Wireless Symposium (IWS)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE MTT-S International Wireless Symposium (IWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWS55252.2022.9977672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a design approach for Ka-band low noise amplifier (LNA) with both high gain and wide bandwidth. With a five-stage cascode structure, emitter degeneration is used in the first stage to implement the simultaneous power and noise matching and positive-feedback network is adopted to enhance the gain in the next four stages. By using stagger tuning technique, wide bandwidth can be achieved. For demonstration, a Ka-band LNA is designed and fabricated in a 0.18 $\boldsymbol{\mu}\mathbf{m}\ \mathbf{SiGe}$ BiCMOS process. It achieves a 3-dB bandwidth from 31.6 GHz to 38.2 GHz with a maximum gain of 42.9 dB. The circuit operates from a 2.5 V supply with a DC power consumption of 60 mW.