A visual-based late-fusion framework for video genre classification

Ionut Mironica, B. Ionescu, C. Rasche, P. Lambert
{"title":"A visual-based late-fusion framework for video genre classification","authors":"Ionut Mironica, B. Ionescu, C. Rasche, P. Lambert","doi":"10.1109/ISSCS.2013.6651188","DOIUrl":null,"url":null,"abstract":"In this paper we investigate the performance of visual features in the context of video genre classification. We propose a late-fusion framework that employs color, texture, structural and salient region information. Experimental validation was carried out in the context of the MediaEval 2012 Genre Tagging Task using a large data set of more than 2,000 hours of footage and 26 video genres. Results show that the proposed approach significantly improves genre classification performance outperforming other existing approaches. Furthermore, we prove that our approach can help improving the performance of the more efficient text-based approaches.","PeriodicalId":260263,"journal":{"name":"International Symposium on Signals, Circuits and Systems ISSCS2013","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Signals, Circuits and Systems ISSCS2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCS.2013.6651188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we investigate the performance of visual features in the context of video genre classification. We propose a late-fusion framework that employs color, texture, structural and salient region information. Experimental validation was carried out in the context of the MediaEval 2012 Genre Tagging Task using a large data set of more than 2,000 hours of footage and 26 video genres. Results show that the proposed approach significantly improves genre classification performance outperforming other existing approaches. Furthermore, we prove that our approach can help improving the performance of the more efficient text-based approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于视觉的视频类型分类后融合框架
本文研究了视觉特征在视频类型分类中的表现。我们提出了一种利用颜色、纹理、结构和显著区域信息的后期融合框架。实验验证是在MediaEval 2012 Genre Tagging Task的背景下进行的,使用了超过2000小时的镜头和26个视频类型的大型数据集。结果表明,该方法显著提高了类型分类性能,优于其他现有方法。此外,我们证明了我们的方法可以帮助提高更有效的基于文本的方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Autor index Dynamic time warping for speech recognition with training part to reduce the computation A face recognition system based on a Kinect sensor and Windows Azure cloud technology An efficient GSC VSS-APA beamformer with integrated log-energy based VAD for noise reduction in speech reinforcement systems RNSIC-1 based wind energy conversion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1