Low-power burst-mode clock recovery circuit using analog phase interpolator

Hadi Hayati, M. Ehsanian
{"title":"Low-power burst-mode clock recovery circuit using analog phase interpolator","authors":"Hadi Hayati, M. Ehsanian","doi":"10.1109/ICM.2014.7071821","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel low-power burst-mode clock recovery circuit (CRC) based on analog phase interpolator (PI). Accordingly, we employed a new configuration for PI-based CRC in which a novel architecture is utilized for double-edge triggered sample-and-hold (DT-SH). In the proposed DT-SH one buffer is shared between two single-edge triggered SH (ST-SH) resulting in great reduction of total power consumption as well as design complexity and die area. Verifying functionality of proposed PI-based CRC, the circuit is designed and simulated in 0.18-μm CMOS technology. As simulation results show, the proposed CRC recovers clock at 5GHz in the first unit interval of input data where approximately 40% reduction in power dissipation is achieved. The circuit consumes 2.54mW power from a 1.8-V supply.","PeriodicalId":107354,"journal":{"name":"2014 26th International Conference on Microelectronics (ICM)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 26th International Conference on Microelectronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM.2014.7071821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a novel low-power burst-mode clock recovery circuit (CRC) based on analog phase interpolator (PI). Accordingly, we employed a new configuration for PI-based CRC in which a novel architecture is utilized for double-edge triggered sample-and-hold (DT-SH). In the proposed DT-SH one buffer is shared between two single-edge triggered SH (ST-SH) resulting in great reduction of total power consumption as well as design complexity and die area. Verifying functionality of proposed PI-based CRC, the circuit is designed and simulated in 0.18-μm CMOS technology. As simulation results show, the proposed CRC recovers clock at 5GHz in the first unit interval of input data where approximately 40% reduction in power dissipation is achieved. The circuit consumes 2.54mW power from a 1.8-V supply.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用模拟相位插补器的低功耗突发模式时钟恢复电路
提出了一种基于模拟相位插补器的低功耗突发模式时钟恢复电路(CRC)。因此,我们采用了一种新的基于pi的CRC配置,其中一种新的架构用于双边缘触发采样保持(DT-SH)。在所提出的DT-SH中,一个缓冲器在两个单边缘触发的SH (ST-SH)之间共享,从而大大降低了总功耗以及设计复杂性和模具面积。为了验证所提出的基于pi的CRC的功能,采用0.18 μm CMOS技术对电路进行了设计和仿真。仿真结果表明,所提出的CRC在输入数据的第一个单位间隔内恢复5GHz的时钟,从而使功耗降低约40%。该电路从1.8 v电源消耗2.54mW功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Haralick features for GEI-based human gait recognition Haralick feature extraction from time-frequency images for epileptic seizure detection and classification of EEG data LVDS receiver with 7mW consumption at 1.5 Gbps Concatenation of dictionaries for recovery of ECG signals using compressed sensing techniques Effect of device, size, activation energy, temperature, and frequency on memristor switching time
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1