Petrophysical Analysis And Rock Physics Diagnostics Of Sognefjord Formation In The Smeaheia Area, Northern North Sea

N. Mondol, M. Fawad, Joonsang Park
{"title":"Petrophysical Analysis And Rock Physics Diagnostics Of Sognefjord Formation In The Smeaheia Area, Northern North Sea","authors":"N. Mondol, M. Fawad, Joonsang Park","doi":"10.3997/2214-4609.201802951","DOIUrl":null,"url":null,"abstract":"This study focuses on petrophysical characterization and rock physics diagnostics of the reservoir sandstones of Sognefjord Formation in the Smeaheia area that penetrated by an exploration well 32/4-1. The large scale CO2 storage site “Smeaheia” is located east of the Troll field in the Stord Basin. The CO2 storage formation is identified within a fault block bounded by major faults to the north, east and west, where the faults system in the east is the Oygarden Fault Complex and the fault to the west and north is the Vette Fault. The storage formation has pinched out towards the south. Petrophysical analysis and rock physics diagnostics suggest that the reservoir sandstone is uncemented and has good to excellent reservoir quality. The reservoir sandstone can be subdivided into three zones where the lower unit (Zone-3) has an excellent reservoir quality (high porosity, high permeability and less clay content) compared to the upper unit (Zone-1 and Zone-2). The two carbonate stringers are present in Zone-3 interpreted as extremely high resistivity, high density, high Vp and low porosity/permeability units which could be flow barriers based on their lateral extent.","PeriodicalId":254996,"journal":{"name":"Fifth CO2 Geological Storage Workshop","volume":"834 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth CO2 Geological Storage Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201802951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This study focuses on petrophysical characterization and rock physics diagnostics of the reservoir sandstones of Sognefjord Formation in the Smeaheia area that penetrated by an exploration well 32/4-1. The large scale CO2 storage site “Smeaheia” is located east of the Troll field in the Stord Basin. The CO2 storage formation is identified within a fault block bounded by major faults to the north, east and west, where the faults system in the east is the Oygarden Fault Complex and the fault to the west and north is the Vette Fault. The storage formation has pinched out towards the south. Petrophysical analysis and rock physics diagnostics suggest that the reservoir sandstone is uncemented and has good to excellent reservoir quality. The reservoir sandstone can be subdivided into three zones where the lower unit (Zone-3) has an excellent reservoir quality (high porosity, high permeability and less clay content) compared to the upper unit (Zone-1 and Zone-2). The two carbonate stringers are present in Zone-3 interpreted as extremely high resistivity, high density, high Vp and low porosity/permeability units which could be flow barriers based on their lateral extent.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
北海北部Smeaheia地区Sognefjord地层岩石物理分析与岩石物理诊断
对Smeaheia地区Sognefjord组进行了32/4-1探井的储层砂岩岩石物理表征和岩石物理诊断。大型二氧化碳储存基地“Smeaheia”位于Stord盆地的Troll油田以东。在北、东、西3个主要断裂为界的断块内确定了CO2储层,其中东部断裂系统为Oygarden断裂复合体,西部和北部断裂为Vette断裂。储藏队形已向南缩小。岩石物理分析和岩石物理诊断表明,储层砂岩未胶结,储层质量良好至优良。储层砂岩可划分为3个带,其中下部单元(3区)的储层质量较上部单元(1区和2区)好(高孔、高渗、低粘粒含量)。3区存在的两个碳酸盐岩夹层被解释为极高电阻率、高密度、高Vp和低孔隙度/渗透率单元,根据它们的横向程度,可能成为流动障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High Resolution Modelling And Steady-State Upscaling Of Large Scale Gravity Currents In Heterogeneous Sandstone Reservoirs Assessing Potential Influence Of Nearby Hydrocarbon Production On CO2 Storage At Smeaheia Quantifying The Risk Of CO2 Leakage Along Fractures Using An Integrated Experimental, Multiscale Modelling And Monitoring Approach Using Well Operation Noise To Estimate Shear Modulus Changes From Measured Tube Waves – A Feasibility Study CO2 Injection In Low Pressure Depleted Reservoirs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1