A Wireless Body Sensor Network System for Healthcare Monitoring Application

Shih-Lun Chen, Ho-Yin Lee, Chiung-An Chen, Chin-Chun Lin, C. Luo
{"title":"A Wireless Body Sensor Network System for Healthcare Monitoring Application","authors":"Shih-Lun Chen, Ho-Yin Lee, Chiung-An Chen, Chin-Chun Lin, C. Luo","doi":"10.1109/BIOCAS.2007.4463354","DOIUrl":null,"url":null,"abstract":"A four levels hierarchy wireless body sensor network (WBSN) is proposed for monitoring healthcare applications. It is separated into communication and control systems. In the communication system, the carrier frequency used in the human body is 402-405 MHz as medical implant communication systems (MICS) band by FCC and the coexistent wireless communication system (2.4 / 60 GHz) was used to transmit the merged biomedical data in the higher levels of the communication system. An adaptive low power and variable resolution control systems are designed into the control system. In order to improve the performance, a communication cycle is created for synchronizing the WBSN system with pipeline control. Each sensor node consists of a micro control unit (MCU), variable sample rate generator, sensor, ADC, data encoder, 402-405 MHz RF transceiver, and antenna. This paper presents a WBSN system, which not only gains the benefits of more flexible, easy development, run-time reconfigurable and variable resolution, but also significantly reduces considerable power consumptions with adaptive low power design.","PeriodicalId":273819,"journal":{"name":"2007 IEEE Biomedical Circuits and Systems Conference","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2007.4463354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

Abstract

A four levels hierarchy wireless body sensor network (WBSN) is proposed for monitoring healthcare applications. It is separated into communication and control systems. In the communication system, the carrier frequency used in the human body is 402-405 MHz as medical implant communication systems (MICS) band by FCC and the coexistent wireless communication system (2.4 / 60 GHz) was used to transmit the merged biomedical data in the higher levels of the communication system. An adaptive low power and variable resolution control systems are designed into the control system. In order to improve the performance, a communication cycle is created for synchronizing the WBSN system with pipeline control. Each sensor node consists of a micro control unit (MCU), variable sample rate generator, sensor, ADC, data encoder, 402-405 MHz RF transceiver, and antenna. This paper presents a WBSN system, which not only gains the benefits of more flexible, easy development, run-time reconfigurable and variable resolution, but also significantly reduces considerable power consumptions with adaptive low power design.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于健康监测的无线身体传感器网络系统
提出了一种用于医疗监控的四层无线身体传感器网络(WBSN)。它分为通信系统和控制系统。在通信系统中,使用的人体载波频率为402-405 MHz,通过FCC作为医疗植入通信系统(MICS)频段,在通信系统高层采用共存无线通信系统(2.4 / 60 GHz)传输合并的生物医学数据。在控制系统中设计了自适应低功耗变分辨率控制系统。为了提高性能,创建了一个通信周期,实现了WBSN系统与管道控制的同步。每个传感器节点由微控制单元(MCU)、可变采样率发生器、传感器、ADC、数据编码器、402-405 MHz射频收发器和天线组成。本文提出了一种WBSN系统,该系统不仅具有灵活、易于开发、运行时可重构和可变分辨率等优点,而且采用自适应低功耗设计,大大降低了系统的功耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Breast Lesions Classification Using Modified Non-Recursive Discrete Biorthogonal Wavelet Transform Efficient Computation of the LF/HF Ratio in Heart Rate Variability Analysis Based on Bitstream Filtering On the Swept-threshold Sampling in UWB Medical Radar Long-term monitoring of electrochemical parameters from stimulated neural tissues A Mixed-Signal Multi-Chip Neural Recording Interface with Bandwidth Reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1