E. Ouyang, Yonghyuk Jeong, JaeMyong Kim, Jaepil Kim, O. Kwon, M. Liu, Susan Lin, Jenn An Wang, Anthony Yang, Eric Yang
{"title":"Warpage of Compression Molded SiP Strips","authors":"E. Ouyang, Yonghyuk Jeong, JaeMyong Kim, Jaepil Kim, O. Kwon, M. Liu, Susan Lin, Jenn An Wang, Anthony Yang, Eric Yang","doi":"10.1109/ECTC32696.2021.00335","DOIUrl":null,"url":null,"abstract":"System-in-Package (SiP) technology has been used for a wide range of electronic devices, but the warpage behavior of the package can be difficult to control and predict due to complex manufacturing parameters and processes [1], [2]. Previous research on the warpage primarily focused only on the SiP module unit, while the consideration of strip warpage as a function of manufacturing processes has not typically been studied theoretically and experimentally. In this paper, the impact of manufacturing processes, mainly the compression molding process, on the warpage is investigated experimentally and numerically. To better understand the advantages of compression molding, we will also compare compression molding with transfer molding using a computer simulation. The paper will point out the pros and cons of these two different manufacturing processes.","PeriodicalId":351817,"journal":{"name":"2021 IEEE 71st Electronic Components and Technology Conference (ECTC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 71st Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC32696.2021.00335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
System-in-Package (SiP) technology has been used for a wide range of electronic devices, but the warpage behavior of the package can be difficult to control and predict due to complex manufacturing parameters and processes [1], [2]. Previous research on the warpage primarily focused only on the SiP module unit, while the consideration of strip warpage as a function of manufacturing processes has not typically been studied theoretically and experimentally. In this paper, the impact of manufacturing processes, mainly the compression molding process, on the warpage is investigated experimentally and numerically. To better understand the advantages of compression molding, we will also compare compression molding with transfer molding using a computer simulation. The paper will point out the pros and cons of these two different manufacturing processes.