Chien-Chieh Lee, Y. Hsieh, Tomi T. T. Li, Jenq-Yang Chang
{"title":"Doping profile control of epitaxial-like Si emitting layer for the application of c-Si solar cells","authors":"Chien-Chieh Lee, Y. Hsieh, Tomi T. T. Li, Jenq-Yang Chang","doi":"10.1109/AM-FPD.2016.7543674","DOIUrl":null,"url":null,"abstract":"The formation of p-n junctions is a crucial step in the fabrication of photovoltaic devices. Standard processes such as high temperature (> 800 °C) diffusion cannot provide the shallow doped layers, with abrupt interfaces. In this study, the epitaxial-like boron-doped silicon (epi-Si) thin films as emitters of c-Si solar cells with structure of ITO/epi-Si(p+)/c-Si(n) are investigated under the modulation of deposited parameters, such as gas ratio, and working pressure. Applying the epi-Si:H (p+) shallow junction with abrupt interface leads to improve the short curent density (Jsc) of the planar c-Si solar cell is higher than 36 mA/cm2, and efficiency reaches above 15%.","PeriodicalId":422453,"journal":{"name":"2016 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AM-FPD.2016.7543674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The formation of p-n junctions is a crucial step in the fabrication of photovoltaic devices. Standard processes such as high temperature (> 800 °C) diffusion cannot provide the shallow doped layers, with abrupt interfaces. In this study, the epitaxial-like boron-doped silicon (epi-Si) thin films as emitters of c-Si solar cells with structure of ITO/epi-Si(p+)/c-Si(n) are investigated under the modulation of deposited parameters, such as gas ratio, and working pressure. Applying the epi-Si:H (p+) shallow junction with abrupt interface leads to improve the short curent density (Jsc) of the planar c-Si solar cell is higher than 36 mA/cm2, and efficiency reaches above 15%.