Fabiano Teixeira, João Luis Zeni Montenegro, C. Costa, R. Righi
{"title":"An Analysis of Machine Learning Classifiers in Breast Cancer Diagnosis","authors":"Fabiano Teixeira, João Luis Zeni Montenegro, C. Costa, R. Righi","doi":"10.1109/CLEI47609.2019.235094","DOIUrl":null,"url":null,"abstract":"In the field of assisted cancer diagnosis, it is expected that the involvement of machine learning in diseases will give doctors a second opinion and help them to make a faster / better determination. There are a huge number of studies in this area using traditional machine learning methods and in other cases, using deep learning for this purpose. This article aims to evaluate the predictive models of machine learning classification regarding the accuracy, objectivity, and reproducible of the diagnosis of malignant neoplasm with fine needle aspiration. Also, we seek to add one more class for testing in this database as recommended in previous studies. We present six different classification methods: Multilayer Perceptron, Decision Tree, Random Forest, Support Vector Machine and Deep Neural Network for evaluation. For this work, we used at University of Wisconsin Hospital database which is composed of thirty values which characterize the properties of the nucleus of the breast mass. As we showed in result sections, DNN classifier has a great performance in accuracy level (92%), indicating better results in relation to traditional models. Random forest 50 and 100 presented the best results for the ROC curve metric, considered an excellent prediction when compared to other previous studies published.","PeriodicalId":216193,"journal":{"name":"2019 XLV Latin American Computing Conference (CLEI)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 XLV Latin American Computing Conference (CLEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEI47609.2019.235094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
In the field of assisted cancer diagnosis, it is expected that the involvement of machine learning in diseases will give doctors a second opinion and help them to make a faster / better determination. There are a huge number of studies in this area using traditional machine learning methods and in other cases, using deep learning for this purpose. This article aims to evaluate the predictive models of machine learning classification regarding the accuracy, objectivity, and reproducible of the diagnosis of malignant neoplasm with fine needle aspiration. Also, we seek to add one more class for testing in this database as recommended in previous studies. We present six different classification methods: Multilayer Perceptron, Decision Tree, Random Forest, Support Vector Machine and Deep Neural Network for evaluation. For this work, we used at University of Wisconsin Hospital database which is composed of thirty values which characterize the properties of the nucleus of the breast mass. As we showed in result sections, DNN classifier has a great performance in accuracy level (92%), indicating better results in relation to traditional models. Random forest 50 and 100 presented the best results for the ROC curve metric, considered an excellent prediction when compared to other previous studies published.