An improved K-means clustering algorithm for two half-moon classification

L. Sawaqed, M. AlShabi, Samer Alshaer, Iyad Salameh
{"title":"An improved K-means clustering algorithm for two half-moon classification","authors":"L. Sawaqed, M. AlShabi, Samer Alshaer, Iyad Salameh","doi":"10.1109/ISMA.2015.7373482","DOIUrl":null,"url":null,"abstract":"Classification problems of machine learning use supervised learning under specific targets to classify new observations. This work presents a new clustering and classification approach that combines an evolutionary algorithm with the K-means algorithm. In order to assess the performance of the proposed approach, the authors conducted a simulation study using a well-known benchmark problem called “two half-moon rings classification”. The selected problem introduces further complexity and higher classification challenge when a new observation is located in region of intersection of the two half-moons. The Cartesian coordinates of several points are used as a data set for two half-moon rings. The set is injected with complex overlap situations to constitute data points that belong to more than one class (ring) at a time. The modified set is investigated using the proposed clustering and classification approach. The proposed algorithm obtains the optimal cluster centers using genetic algorithm. Furthermore, it adopts whitening method to overcome the effect of overlapped points on clustering accuracy. Obtained classification results showed enhancement over those produced by the conventional K-means clustering algorithm. The results are consistent under different ring dimensions, and several overlap situations.","PeriodicalId":222454,"journal":{"name":"2015 10th International Symposium on Mechatronics and its Applications (ISMA)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 10th International Symposium on Mechatronics and its Applications (ISMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMA.2015.7373482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Classification problems of machine learning use supervised learning under specific targets to classify new observations. This work presents a new clustering and classification approach that combines an evolutionary algorithm with the K-means algorithm. In order to assess the performance of the proposed approach, the authors conducted a simulation study using a well-known benchmark problem called “two half-moon rings classification”. The selected problem introduces further complexity and higher classification challenge when a new observation is located in region of intersection of the two half-moons. The Cartesian coordinates of several points are used as a data set for two half-moon rings. The set is injected with complex overlap situations to constitute data points that belong to more than one class (ring) at a time. The modified set is investigated using the proposed clustering and classification approach. The proposed algorithm obtains the optimal cluster centers using genetic algorithm. Furthermore, it adopts whitening method to overcome the effect of overlapped points on clustering accuracy. Obtained classification results showed enhancement over those produced by the conventional K-means clustering algorithm. The results are consistent under different ring dimensions, and several overlap situations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
两个半月分类的改进K-means聚类算法
机器学习的分类问题使用特定目标下的监督学习对新的观察值进行分类。这项工作提出了一种新的聚类和分类方法,该方法结合了进化算法和K-means算法。为了评估所提出方法的性能,作者使用了一个众所周知的基准问题“两个半月环分类”进行了模拟研究。当一个新的观测点位于两个半月的交点区域时,所选择的问题带来了进一步的复杂性和更高的分类挑战。用几个点的笛卡尔坐标作为两个半月环的数据集。该集合被注入了复杂的重叠情况,以构成一次属于多个类(环)的数据点。利用提出的聚类和分类方法对修改后的集合进行了研究。该算法采用遗传算法获得最优聚类中心。采用白化方法克服了重叠点对聚类精度的影响。得到的分类结果比传统K-means聚类算法得到的分类结果有增强。在不同环尺寸和几种重叠情况下,结果是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A hardware setup for formation flight of UAVs using motion tracking system Review of robotic control strategies for industrial finishing operations A Kinect-based indoor mobile robot localization PLC controlled, small-scaled olive press for household and agricultural research utilization Design of a brain controlled hand exoskeleton for patients with motor neuron diseases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1