Adapting conversational strategies to co-optimize agent's task performance and user's engagement

L. Galland, C. Pelachaud, Florian Pecune
{"title":"Adapting conversational strategies to co-optimize agent's task performance and user's engagement","authors":"L. Galland, C. Pelachaud, Florian Pecune","doi":"10.1145/3514197.3549674","DOIUrl":null,"url":null,"abstract":"In this work, we present a socially interactive agent able to adapt its conversational strategies to maximize user's engagement during the interaction. For this purpose, we train our agent with simulated users using deep reinforcement learning. First, the agent estimates the simulated user's engagement depending on the latter's nonverbal behaviors and turn-taking status. This measured engagement is then used as a reward to balance the task of the agent (giving information) and its social goal (maintaining the user highly engaged). Agent's dialog acts may have different impact on the user's engagement depending on the latter's conversational preferences.","PeriodicalId":149593,"journal":{"name":"Proceedings of the 22nd ACM International Conference on Intelligent Virtual Agents","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM International Conference on Intelligent Virtual Agents","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3514197.3549674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this work, we present a socially interactive agent able to adapt its conversational strategies to maximize user's engagement during the interaction. For this purpose, we train our agent with simulated users using deep reinforcement learning. First, the agent estimates the simulated user's engagement depending on the latter's nonverbal behaviors and turn-taking status. This measured engagement is then used as a reward to balance the task of the agent (giving information) and its social goal (maintaining the user highly engaged). Agent's dialog acts may have different impact on the user's engagement depending on the latter's conversational preferences.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
调整会话策略,共同优化代理的任务性能和用户参与度
在这项工作中,我们提出了一个能够适应其会话策略的社会交互代理,以最大限度地提高用户在交互过程中的参与度。为此,我们使用深度强化学习对模拟用户进行智能体训练。首先,代理根据模拟用户的非语言行为和轮询状态来估计其参与程度。这种可测量的粘性被用作平衡代理任务(提供信息)和社交目标(保持用户高度粘性)的奖励。根据用户的会话偏好,Agent的对话行为可能会对用户的参与产生不同的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reusable virtual coach for smoking cessation and physical activity coaching Effects of rhetorical strategies and skin tones on agent persuasiveness in assisted decision-making Examining the impact of emotion and agency on negotiator behavior Negotiation game to introduce non-linear utility Personality analysis of face swaps: can they be used as avatars?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1