T. Maiti, T. Hayashi, L. Chen, M. Miura-Mattausch, H. Mattausch
{"title":"Organic thin-film transistor compact model with accurate charge carrier mobility","authors":"T. Maiti, T. Hayashi, L. Chen, M. Miura-Mattausch, H. Mattausch","doi":"10.1109/SISPAD.2014.6931581","DOIUrl":null,"url":null,"abstract":"A physical compact charge carrier mobility model for undoped-body organic thin-film transistors (OTFTs) based on an analysis of the bias-dependent Fermi-energy movement in the band gap is reported. Mobility in localized- and extended-energy states predicts the current transport in week- and strong-inversion regimes, respectively. A hopping mobility model as a function of surface potential is developed to describe the carrier transport through localized trap states located in the band gap. The Poole-Frenkel field effect mechanism is considered to interpret the band-like carrier transport mechanism in extended energy states. Modeled results are compared with the measured DNTT-based high-performance OTFTs data to verify the model.","PeriodicalId":101858,"journal":{"name":"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"176 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2014.6931581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
A physical compact charge carrier mobility model for undoped-body organic thin-film transistors (OTFTs) based on an analysis of the bias-dependent Fermi-energy movement in the band gap is reported. Mobility in localized- and extended-energy states predicts the current transport in week- and strong-inversion regimes, respectively. A hopping mobility model as a function of surface potential is developed to describe the carrier transport through localized trap states located in the band gap. The Poole-Frenkel field effect mechanism is considered to interpret the band-like carrier transport mechanism in extended energy states. Modeled results are compared with the measured DNTT-based high-performance OTFTs data to verify the model.