{"title":"Fast controllers for data dominated applications","authors":"Andre Hertwig, H. Wunderlich","doi":"10.1109/EDTC.1997.582337","DOIUrl":null,"url":null,"abstract":"A target structure for implementing fast edge-triggered control units is presented. In many cases, the proposed controller is faster than a one-hot encoded structure as its correct timing does not require master-slave flip-flops even in the presence of unpredictable clocking skews. A synthesis procedure is proposed which leads to a performance improvement of 40% on average for the standard benchmark set whereas the additional area is less than 25% compared with conventional finite state machine (FSM) synthesis. The proposed approach is compatible with the state-of-the-art methods for FSM decomposition, state encoding and logic synthesis.","PeriodicalId":297301,"journal":{"name":"Proceedings European Design and Test Conference. ED & TC 97","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings European Design and Test Conference. ED & TC 97","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDTC.1997.582337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
A target structure for implementing fast edge-triggered control units is presented. In many cases, the proposed controller is faster than a one-hot encoded structure as its correct timing does not require master-slave flip-flops even in the presence of unpredictable clocking skews. A synthesis procedure is proposed which leads to a performance improvement of 40% on average for the standard benchmark set whereas the additional area is less than 25% compared with conventional finite state machine (FSM) synthesis. The proposed approach is compatible with the state-of-the-art methods for FSM decomposition, state encoding and logic synthesis.