Rough Margin-Based Linear v Support Vector Machine

Yitian Xu, Haozhi Zhang, Laisheng Wang
{"title":"Rough Margin-Based Linear v Support Vector Machine","authors":"Yitian Xu, Haozhi Zhang, Laisheng Wang","doi":"10.4156/JCIT.VOL5.ISSUE8.25","DOIUrl":null,"url":null,"abstract":"Rough set theory is introduced into linear νsupport vector machine (svm), and rough margin-based linear νsvm is proposed in this paper. By constructing rough lower margin, rough upper margin and rough boundary in linear ν svm, then we maximize the rough margin not margin in linear ν svm. Thus more points are considered in constructing the separating hyper-plane than those used in linear υ svm. Moreover, different points in different positions are proposed to have different effect on the separating hyper-plane, where points in the lower margin have more effects than those in the boundary of the rough margin. The proposed algorithm is compared with other svm algorithms, the experiment results demonstrate the feasibility and validity of the proposed algorithm.","PeriodicalId":360193,"journal":{"name":"J. Convergence Inf. Technol.","volume":"1 Chicago No 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Convergence Inf. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4156/JCIT.VOL5.ISSUE8.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Rough set theory is introduced into linear νsupport vector machine (svm), and rough margin-based linear νsvm is proposed in this paper. By constructing rough lower margin, rough upper margin and rough boundary in linear ν svm, then we maximize the rough margin not margin in linear ν svm. Thus more points are considered in constructing the separating hyper-plane than those used in linear υ svm. Moreover, different points in different positions are proposed to have different effect on the separating hyper-plane, where points in the lower margin have more effects than those in the boundary of the rough margin. The proposed algorithm is compared with other svm algorithms, the experiment results demonstrate the feasibility and validity of the proposed algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于粗糙边缘的线性v支持向量机
将粗糙集理论引入到线性ν支持向量机中,提出了基于粗糙边缘的线性ν支持向量机。通过在线性ν svm中构造粗糙的下边界、粗糙的上边界和粗糙的边界,使线性ν svm中的粗糙边缘非边缘最大化。因此,在构造分离超平面时要考虑比线性υ svm中使用的点更多的点。此外,提出了不同位置的点对分离超平面的影响不同,其中下边缘的点比粗边缘的点影响更大。将该算法与其他支持向量机算法进行了比较,实验结果验证了该算法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Maximal Frequent Pattern Outlier Factor for Online High-Dimensional Time-Series Outlier Detection Spirit: Security and Privacy in Real-Time Monitoring System Integrating Product Information Management (PIM) with Internet-Mediated Transactions (IMTs) Area Optimization in Floorplanning Using AP-TCG People Summarization by Combining Named Entity Recognition and Relation Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1